COMPSs

s 111

COMPSs Manual

Workflows and Distributed Computing Group

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

Last updated : June, 2022

Online version available at COMPSs - ReadTheDocs

https://compss-doc.readthedocs.io/en/latest/

Table of contents

Table of contents
List of figures
List of tables

1 What is COMPSs?
1.1 More information:

2 Quickstart

2.1 Install COMPSS e
2.2 Write your first app e
2.3 Useful information

3 Installation and Administration

3.1 Dependencies e e e
3.1.1 Build Dependencies
3.1.2 Optional Dependencies

3.2 Building from sources L
3.2.1 Postinstallationo L e

3.3 PIp . o e
3.3.1 Pre-requisites e e e
3.3.2 Imstallation
3.3.3 Post installation L

3.4 Supercomputers e e e e e
3.4.1 Prerequisites e e
3.4.2 Imstallation L e
3.4.3 Configuration e e
3.4.4 Post installationo

3.5 Additional Configuration
3.5.1 Configure SSH passwordless L
3.5.2 Configure the COMPSs Cloud Connectors v

3.6 Configuration Files e
3.6.1 Resourcesfile
3.6.2 Project file e
3.6.3 Configuration examples L L

4 Application development

A1 Java . .o e e e e
4.1.1 Programming Model e
4.1.2 Application Compilation L
4.1.3 Application Execution

4.2 Python Binding L

4.2.1 Programming Model e

4.2.2 Application Execution
4.2.3 Integration with Jupyter notebook oL oL
4.2.4 Integration with emcee L e e e
43 C/CH++ Binding
4.3.1 Programming Model e
4.3.2 Use of programming models inside tasks L.
4.3.3 Application Compilation
4.3.4 Application Execution L
4.3.5 Task Dependency Graph e
4.4 Constraints e e
Execution Environments
5.1 Schedulers
5.2 Checkpointing e e
5.3 Deployments e
5.3.1 Master-Worker Deployments
5.3.2 Agents Deployments
Tools
6.1 Application graph L
6.2 Monitor e e
6.2.1 Service configuration L L
6.2.2 Usage e e
6.2.3 Graphical Interface features e
6.3 Tracing
6.3.1 COMPSs applications tracing L e
6.3.2 Visualization
6.3.3 Imterpretation oL L e
6.3.4 Analysis e
6.3.5 PAPIL: Hardware Counters
6.3.6 Paraver: configurations L L
6.3.7 User Events in Python
6.4 Data Provenance L e
6.4.1 Software dependencies e e
6.4.2 Previous needed information L
6.4.3 Usage e
6.4.4 Result e
6.4.5 ro-crate-metadata.json example oL oL oL oL

Persistent Storage

7.1

7.2

7.3

7.4

7.5

First steps o o e
7.1.1 Defining the data model L
7.1.2 Interacting with the persistent storage o Lo
7.1.3 Running with persistent storage oL Lo
COMPSs + dataClay o .o e e e
7.2.1 COMPSs + dataClay Dependencies
7.2.2 Enabling COMPSs applications with dataClay
7.2.3 Executing a COMPSs application with dataClay
COMPSs + Hecuba e
7.3.1 COMPSs + Hecuba Dependencies
7.3.2 Enabling COMPSs applications with Hecuba
7.3.3 Executing a COMPSs application with Hecuba
COMPSs + Redis o oo
7.4.1 COMPSs + Redis Dependencies i
7.4.2 Enabling COMPSs applications with Redis
7.4.3 Executing a COMPSs application with Redis
Implement your own Storage interface for COMPSs

7.5.1 Generic Storage Object Interface o

7.5.2 Generic Storage Runtime Interfaces
7.5.3 Storage Interface usage L

8 Sample Applications

8.1 Java Sample applications L oL
8.1.1 Hello World e
8.1.2 Simple L e
8.1.3 Increment L e
8.1.4 Matrix multiplication Lo
8.1.5 Sparse LU decomposition
8.1.6 BLAST Workflow e

8.2 Python Sample applications
8.2.1 Simple L e
8.2.2 Increment L e e
8.2.3 Kmeanso
8.2.4 Matmul e e
8.2.5 Lysozyme in water Lo
8.2.6 Persistent Storage L

8.3 C/C++ Sample applications
8.3.1 Simple L
8.3.2 Increment L. e

PyCOMPSs CLI

9.1 Requirements and Installation L e
9.1.1 Requirements oL e e e e e
9.1.2 Imstallation L
9.2 Usage
9.2.1 Create a new COMPSs environment in your development directory
9.2.2 Managing environments Lo L oL o Lo e e
9.2.3 Deploying applications L L e
9.2.4 Executing applications
9.2.5 Managing jobs e
9.2.6 Running the COMPSs monitor
9.2.7 Running Jupyter notebooks
9.2.8 Generating the task graph
9.2.9 Tracing applications or notebooks Lo L Lo o
9.2.10 Adding more nodes e
9.2.11 Removing existing nodes L

10 PyCOMPSs Notebooks

10.1 Syntax . . . o oL e e
10.1.1 Basics of programming with PyCOMPSs
10.1.2 PyCOMPSs: Synchronization L
10.1.3 PyCOMPSs: Using objects, lists, and synchronization
10.1.4 PyCOMPSs: Using objects, lists, and synchronization
10.1.5 PyCOMPSs: Using objects, lists, and synchronization. Using collections.
10.1.6 PyCOMPSs: Using objects, lists, and synchronization. Using dictionary.
10.1.7 PyCOMPSs: Using objects, lists, and synchronization. Managing fault-tolerance.
10.1.8 PyCOMPSs: Using files 0 o e
10.1.9 PyCOMPSs: Using constraints 0o
10.1.10PyCOMPSs: Polymorphism
10.1.11 PyCOMPSs: Other decorators - Binary v i v i i
10.1.12PyCOMPSs: Integration with Numba
10.1.13Dislib tutorialo
10.1.14 Machine Learning with dislib o o

10.2 Hands-on L e
10.2.1 Sort by Key o o e
10.2.2 KMeans o L e e
10.2.3 KMeans with Reduce

10.2.4 Cholesky Decomposition/Factorizationo Lo 396

10.2.5 Wordcount Exercise 400
10.2.6 Wordcount Solution 402
10.2.7 Wordcount Solution (With reduce) L o 405
10.2.8 Integral PI (iterative) 408
10.2.9 Integral PI (with @Qreduction)o i 411

10.3 Demos o o e e e e e e 413
10.3.1 Accelerating parallel code with PyCOMPSs and Numba 413

11 Troubleshooting 421
11.1 How todebug o e 421
11.1.1 Java examples oL e e 422
11.1.2 Python examples e e e e e e 422
11.1.3 C/C++examples Lo e 426

11.2 Common Issues o 426
11.2.1 Tasks are not executed L 426
11.2.2 Jobs fail e 426
11.2.3 Exceptions when starting the Worker processes 427
11.2.4 Compilation error: @Method not found o oL 427
11.2.5 Jobs failed on method reflection L o 428
11.2.6 Jobs failed on reflect target invocation null pointero 429
11.2.7 Tracing merge failed: too many open files Lo 429
11.2.8 Performance issues e e 430

11.3 Memory Profiling oL e 431
11.3.1 Advanced profiling L 431

11.4 Known Limitations 0. e e 433
11.4.1 Global e 433
11.4.2 With Java Applications 433
11.4.3 With Python Applications e 434

11.4.4 With Services e 435

List of figures

[\

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

The dependency graph of the increment application 14
Trace of the increment application L 15
Matmul Execution Graph. e 19
Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts and in Orange

system dependant scripts L. oL oL Lo e e 32
Cluster example e 43
Task dependency graph of the Code 113 execution 120
Matmul Execution Graph. 132
Output generated by the execution of the Simple Java application with COMPSs 151
Sequential execution of the Hello java application, 151
COMPSs execution of the Hello java application 151
Structure of the logs folder for the Simple java application in off mode 152
Structure of the logs folder for the Simple java application in info mode 152
runtime.log generated by the execution of the Simple java application 153
resources.log generated by the execution of the Simple java application 153
Structure of the logs folder for the Simple java application in debug mode 153
COMPSs Monitor login for Supercomputers o 169
COMPSs Monitor main page for a test application at Supercomputers 170
Result and log folders of a Matmul execution with COMPSs and Docker 173
The dependency graph of the SparseLU application 190
COMPSs Monitor start command 191
COMPSs monitoring interface L L 191
Logs generated by the Simple java application with the monitoring flag enabled 192
tracefile for a k-means algorithm visualized with compss_runtime.cfg 200
Paraver menu Lo e 204
Kmeans Trace file e 204
Paraver view adjustment: View Event Flagso oL 205
Paraver view adjustment: Show info panelo o oo 206
Paraver view adjustment: Zoom configuration oL oL Lo 206
Paraver view adjustment: Zoom result L 206
Trace interpretation oL L e 207
Basic trace view of a Kmeans execution. L Lo 208
Data dependencies graph of a Kmeans execution. 0L 208
Zoomed in view of a Kmeans execution (first iteration).o L. 208
Original sample trace of a Kmeans execution to be analyzed 209
Paraver Menu - New Histogram L 209
Histogram configuration (Accept default values) Lo L 210
Kmeans histogram corresponding to previous trace Lo 210
Kmeans numerical histogram corresponding to previous trace 210

39
40
41
42

43

44
45
46
47
48
49
50
51
52
53

54

Paraver window properties button Lo Lo 211

Paraver histogram options menu oL 212
Kmeans histogram with the number of bursts 0oL 212
User events trace file 218
COMPSs with persistent storage architecture 231
Java increment tasks graph oL Lo 259
Matrix multiplication L e e e 259
Sparse LU decomposition 261
The COMPSs Blast workflow 263
Python increment tasks grapho oo 268
Python kmeans tasks graph L Lo 274
Python matrix multiplication tasks graph L 277
Python Lysozyme in Water tasks graph L 283
1xyw Potential result (plotted with GRACE) 285
Cincrement tasks graph L Lo 302

mprof plot example L 431

List of tables

N O U W N

10
11
12
13
14
15

16
17

18
19
20

21
22
23
24
25
26

COMPSs dependencies 0 e e e 21
Connector supported properties in the project.xml file 52
Properties supported by any SSH based connector in the project.xml file 52
rOCCI extensions in the project.xml file oo oL 53
Configuration of the <resources>.xml templates file, 53
JClouds extensions in the <project>.xml file oo oL 53
Mesos connector options in the <project>.xml file o oL, o4
Arguments of the @task decorator 84
Supported StdIOStreams for the @binary, @ompss and @mpi decorators 100
File parameters definition shortcuts Lo 101
COMPSs Python API functions 0 e 109
PyCOMPSs start function for Jupyter notebook 116
PyCOMPSs stop function for Jupyter notebook L. 117
Arguments of the @constraint decorator e 134
Arguments of the @Processor decorator e 135
Schedulers e 138
Checkpointing L e 139
General paraver configurations for COMPSs Applications 214
Available paraver configurations for Python events of COMPSs Applications 215
Available paraver configurations for COMPSs Applications 215
Available methods from StorageObject L 233
Available methods from StorageObject in Python L. 235
Available methods from StorageObject 244
SCO object definition L e 247
Java APL o e 249
Python API L 251

vii

COMPSs Documentation, 3.0

COMP Superscalar (COMPSs) is a task-based programming model which aims to ease the development
of applications for distributed infrastructures, such as large High-Performance clusters (HPC), clouds and con-
tainer managed clusters. COMPSs provides a programming interface for the development of the applications
and a runtime system that exploits the inherent parallelism of applications at execution time.

To improve programming productivity, the COMPSs programming model has following characteristics:

e Agnostic of the actual computing infrastructure: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail that
could tie them to a particular platform, like deployment or resource management. This makes applications
portable between infrastructures with diverse characteristics.

e Single memory and storage space: the memory and file system space is also abtracted in COMPSs,
giving the illusion that a single memory space and single file system is available. The runtime takes care of
all the necessary data transfers.

e Standard programming languages: COMPSs is based on the popular programming language Java, but
also offers language bindings for Python (PyCOMPSs) and C/C++ applications. This makes it easier to
learn the model since programmers can reuse most of their previous knowledge.

e No APIs: In the case of COMPSs applications in Java, the model does not require to use any special API
call, pragma or construct in the application; everything is pure standard Java syntax and libraries. With
regard the Python and C/C++ bindings, a small set of API calls should be used on the COMPSs applications.

This manual is divided in 12 sections:

http://compss.bsc.es

COMPSs Documentation, 3.0

Chapter 1

What 1s COMPSs?

COMP Superscalar (COMPSs) is a task-based programming model which aims to ease the development
of applications for distributed infrastructures, such as large High-Performance clusters (HPC), clouds and con-
tainer managed clusters. COMPSs provides a programming interface for the development of the applications
and a runtime system that exploits the inherent parallelism of applications at execution time.

To improve programming productivity, the COMPSs programming model has following characteristics:

e Sequential programming: COMPSs programmers do not need to deal with the typical duties of paral-
lelization and distribution, such as thread creation and synchronization, data distribution, messaging or fault
tolerance. Instead, the model is based on sequential programming, which makes it appealing to users that
either lack parallel programming expertise or are looking for better programmability.

e Agnostic of the actual computing infrastructure: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail that
could tie them to a particular platform, like deployment or resource management. This makes applications
portable between infrastructures with diverse characteristics.

e Single memory and storage space: the memory and file system space is also abtracted in COMPSs,
giving the illusion that a single memory space and single file system is available. The runtime takes care of
all the necessary data transfers.

e Standard programming languages: COMPSs is based on the popular programming language Java, but
also offers language bindings for Python (PyCOMPSs) and C/C++ applications. This makes it easier to
learn the model since programmers can reuse most of their previous knowledge.

e No APIs: In the case of COMPSs applications in Java, the model does not require to use any special API
call, pragma or construct in the application; everything is pure standard Java syntax and libraries. With
regard the Python and C/C++ bindings, a small set of API calls should be used on the COMPSs applications.

PyCOMPSs/COMPSs can be seen as a programming environment for the development of complex work-
flows. For example, in the case of PyCOMPSs, while the task-orchestration code needs to be written in Python, it
supports different types of tasks, such as Python methods, external binaries, multi-threaded (internally parallelised
with alternative programming models such as OpenMP or pthreads), or multi-node (MPI applications). Thanks
to the use of Python as programming language, PyCOMPSs naturally integrates well with data analytics and
machine learning libraries, most of them offering a Python interface. PyCOMPSs also supports reading/writing
streamed data.

At a lower level, the COMPSs runtime manages the execution of the workflow components implemented with
the PyCOMPSs programming model. At runtime, it generates a task-dependency graph by analysing the
existing data dependencies between the tasks defined in the Python code. The task-graph encodes the existing
parallelism of the workflow, which is then scheduled and executed by the COMPSs runtime in the computing
resources.

The COMPSs runtime is also able to react to tasks failures and to exceptions in order to adapt the behaviour
accordingly. These functionalities, offer the possibility of designing a new category of workflows with very
dynamic behaviour, that can change their configuration at execution time upon the occurrence of given events.

COMPSs Documentation, 3.0

1.1 More information:

e Project website: http://compss.bsc.es
e Project repostory: https://github.com/bsc-wdc/compss

4 Chapter 1. What is COMPSs?

http://compss.bsc.es
https://github.com/bsc-wdc/compss

Chapter 2

Quickstart

2.1 Install COMPSs

e Choose the installation method:
Pip
Build from sources
Supercomputer
Docker
Local to the user
Systemwide
Requirements:

e Ensure that the required system Dependencies are installed.

e Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment
variable.

e Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the $HOME/ . Local/ folder (or alternatively within the active virtual environment).

$ pip install pycompss -v

Important: Please, update the environment after installing COMPSs:

$ source ~/.bashrc # or alternatively reboot the machine

If installed within a virtual environment, deactivate and activate it to ensure that the environment is
propperly updated.

Warning: If using Ubuntu 18.04 or higher, you will need to comment some lines of your .bashrc
and do a complete logout. Please, check the Post installation Section for detailed instructions.

See Installation and Administration section for more information
Requirements:

e Ensure that the required system Dependencies are installed.

COMPSs Documentation, 3.0

e Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment
variable.

e Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the /usr/1ib64/pythonX.Y/site-packages/pycompss/ folder.

$ sudo -E pip install pycompss -v

Important: Please, update the environment after installing COMPSs:

$ source /etc/profile.d/compss.sh # or alternatively reboot the machine

Warning: If using Ubuntu 18.04 or higher, you will need to comment some lines of your .bashrc
and do a complete logout. Please, check the Post installation Section for detailed instructions.

See Installation and Administration section for more information
Local to the user

Systemwide

Requirements:

e Ensure that the required system Dependencies are installed.

e Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment
variable.

e Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the $H0ME/COMPSs/ folder.

$ git clone https://github.com/bsc-wdc/compss.git
$ cd compss

$./submodules_get.sh

$./submodules_patch.sh

$ cd builders/

$ export INSTALL_DIR=$HOME/COMPSs/

$./buildlocal ${INSTALL_DIR}

The different installation options can be found in the command help.

$./buildlocal -h

Please, check the Post installation Section.
See Installation and Administration section for more information
Requirements:

e Ensure that the required system Dependencies are installed.

e Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment
variable.

e Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the /opt/COMPSs/ folder.

6 Chapter 2. Quickstart

COMPSs Documentation, 3.0

git clone https://github.com/bsc-wdc/compss.git
cd compss

./submodules_get.sh

./submodules_patch.sh

cd builders/

export INSTALL_DIR=/opt/COMPSs/

sudo -E ./buildlocal ${INSTALL_DIR}

P hH P P PH P P

The different installation options can be found in the command help.

$./buildlocal -h

Please, check the Post installation Section.

See Installation and Administration section for more information
Please, check the Supercomputers section.

COMPSs can be used within Docker using the PyCOMPSs CLI.
Requirements (Optional):

docker >= 17.12.0-ce
Python 3

pip

docker package for Python

Since the PyCOMPSs CLI package is available in Pypi (pycompss-cli), it can be easly installed with pip as follows:

$ python3 -m pip install pycompss-cli

A complete guide about the PyCOMPSs CLI installation and usage can be found in the PyCOMPSs CLI Section.

Tip: Please, check the PyCOMPSs CLI Installation Section for the further information with regard to the
requirements installation and troubleshooting.

Warning: For macOS distributions, only installations local to the user are supported (both with pip and
building from sources). This is due to the System Integrity Protection (SIP) implemented in the newest versions
of macOS, that does not allow modifications in the /System directory, even when having root permissions in
the machine.

2.2 Write your first app

Choose your flavour:
Java

Python

C/C++

2.2. Write your first app 7

https://www.docker.com
https://pypi.org/project/docker/
https://pypi.org/project/pycompss-cli/

COMPSs Documentation, 3.0

Application Overview

A COMPSs application is composed of three parts:

e Main application code: the code that is executed sequentially and contains the calls to the user-selected
methods that will be executed by the COMPSs runtime as asynchronous parallel tasks.

e Remote methods code: the implementation of the tasks.

e Task definition interface: It is a Java annotated interface which declares the methods to be run as remote
tasks along with metadata information needed by the runtime to properly schedule the tasks.

The main application file name has to be the same of the main class and starts with capital letter, in this
case it is Simple.java. The Java annotated interface filename is application name + Itf.java, in this case it is
Simpleltf.java. And the code that implements the remote tasks is defined in the application name + Impl.java
file, in this case it is SimpleImpl.java.

All code examples are in the /home/compss/tutorial_apps/java/ folder of the development environment.

Main application code

In COMPSs, the user’s application code is kept unchanged, no API calls need to be included in the main application
code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the creation of
remote tasks also taking care of the access to files where required. Let’s consider the Simple application example
that takes an integer as input parameter and increases it by one unit.

The main application code of Simple application is shown in the following code block. It is executed sequentially
until the call to the increment() method. COMPSs, as mentioned above, replaces the call to this method with
the generation of a remote task that will be executed on an available node.

Code 1: Simple in Java (Simple.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import simple.SimpleImpl;

public class Simple {
public static void main(String[] args) {

String counterName = "counter";
int initialValue = args[0];

2 — //
// Creation of the file which will contain the counter variable //
F A et e R LT //
try {

FileOutputStream fos = new FileOutputStream(counterName) ;
fos.write(initialValue);
System.out.println("Initial counter value is " + initialValue);
fos.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}
Y e et //
// Ezecution of the program //

(continues on next page)

8 Chapter 2. Quickstart

COMPSs Documentation, 3.0

(continued from previous page)

F A e //
SimpleImpl.increment (counterName) ;

/) //
// Reading from an object stored in a File //
F A e L e T //
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());
fis.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

}
}

Remote methods code

The following code contains the implementation of the remote method of the Simple application that will be
executed remotely by COMPSs.

Code 2: Simple Implementation (Simplelmpl.java)

package simple;

import java.io.FilelInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.FileNotFoundException;

public class SimpleImpl {
public static void increment(String counterFile) {

try{
FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close();
FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count);
fos.close();

}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();

}catch(IOException ioe){
ioe.printStackTrace();

}

2.2. Write your first app 9

COMPSs Documentation, 3.0

Task definition interface

This Java interface is used to declare the methods to be executed remotely along with Java annotations that specify
the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String type are

supported) and its directions (IN, OUT, INOUT, COMMUTATIVE or CONCURRENT).

The Java class that contains the code of the method.

3. The constraints that a given resource must fulfill to execute the method, such as the number of processors
or main memory size.

N

The task description interface of the Simple app example is shown in the following figure. It includes the description
of the Increment() method metadata. The method interface contains a single input parameter, a string containing
a path to the file counterFile. In this example there are constraints on the minimum number of processors and
minimum memory size needed to run the method.

Code 3: Interface of the Simple application (Simpleltf.java)

package simple;

import es.bsc.compss.types.annotations.Constraints;

import es.bsc.compss.types.annotations.task.Method;

import es.bsc.compss.types.annotations.Parameter;

import es.bsc.compss.types.annotations.parameter.Direction;
import es.bsc.compss.types.annotations.parameter.Type;

public interface SimpleItf {

OConstraints(computingUnits = "1", memorySize = "0.3")
@Method(declaringClass = "simple.SimpleImpl")
void increment(
OParameter (type = Type.FILE, direction = Direction.INOUT)
String file
)3

Application compilation

A COMPSs Java application needs to be packaged in a jar file containing the class files of the main code, of
the methods implementations and of the Itf annotation. This jar package can be generated using the commands
available in the Java SDK or creating your application as a Apache Maven project.

To integrate COMPSs in the maven compile process you just need to add the compss-api artifact as dependency
in the application project.

<dependencies>
<dependency>
<groupId>es.bsc.compss</groupld>
<artifactId>compss-api</artifactId>
<version>${compss.version}</version>
</dependency>
</dependencies>

To build the jar in the maven case use the following command

$ mvn package

Next we provide a set of commands to compile the Java Simple application (detailed at Java Sample applications).

10 Chapter 2. Quickstart

COMPSs Documentation, 3.0

$ cd tutorial_apps/java/simple/src/main/java/simple/

$~/tutorial _apps/java/simple/src/main/java/simple$ javac *.java
$~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
$~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple/
$~/tutorial_apps/java/simple/src/main/java$ mv ./simple.jar ../../../jar/

In order to properly compile the code, the CLASSPATH variable has to contain the path of the compss-engine.jar
package. The default COMPSs installation automatically add this package to the CLASSPATH; please check
that your environment variable CLASSPATH contains the compss-engine.jar location by running the following
command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine.jar package in
your classpath. We recommend to automatically load the variable by editing the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

Application execution

A Java COMPSs application is executed through the runcompss script. An example of an invocation of the script
is:

$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar simple.Simple 1

A comprehensive description of the runcompss command is available in the Fzecuting COMPSs applications section.

In addition to Java, COMPSs supports the execution of applications written in other languages by means of
bindings. A binding manages the interaction of the no-Java application with the COMPSs Java runtime, providing
the necessary language translation.

Let’s write your first Python application parallelized with PyCOMPSs. Consider the following code:

Code 4: increment.py

import time
from pycompss.api.api import compss_wait_on
from pycompss.api.task import task

O@task(returns=1)

def increment(value):
time.sleep(value * 2) # mimic some computational time
return value + 1

def main():
values = [1, 2, 3, 4]
start_time = time.time()
for pos in range(len(values)):
values[pos] = increment(values [pos])
values = compss_wait_on(values)

assert values == [2, 3, 4, 5]

print(values)

print("Elapsed time: " + str(time.time() - start_time))
if __name__=='__main__":

main()

2.2. Write your first app 11

COMPSs Documentation, 3.0

This code increments the elements of an array (values) by calling iteratively to the increment function. The
increment function sleeps the number of seconds indicated by the value parameter to represent some computational
time. On a normal python execution, each element of the array will be incremented after the other (sequentially),
accumulating the computational time. PyCOMPSs is able to parallelize this loop thanks to its @task decorator,
and synchronize the results with the compss_wait_on API call.

Note: If you are using the PyCOMPSs CLI (pycompss-cli), it is time to deploy the COMPSs environment within
your current folder:

$ pycompss init

Please, be aware that the first time needs to download the docker image from the repository, and it may take a
while.

Copy and paste the increment code it into increment.py.

Execution

Now let’s execute increment.py. To this end, we will use the runcompss script provided by COMPSs:

$ runcompss -g increment.py
[Output in next step]

Or alternatively, the pycompss run command if using the PyCOMPSs CLI (which wraps the runcompss command
and launches it within the COMPSs’ docker container):

$ pycompss run -g increment.py
[Output in next step]

Note: The -g flag enables the task dependency graph generation (used later).

The runcompss command has a lot of supported options that can be checked with the -h flag. They can also be
used within the pycompss run command.

Tip: It is possible to run also with the python command using the pycompss module, which accepts the same
flags as runcompss:

$ python -m pycompss -g increment.py # Parallel ezecution
[Output in next stepl

Having PyCOMPSs installed also enables to run the same code sequentially without the need of removing the
PyCOMPSs syntax.

$ python increment.py # Sequential ezecution
[2, 3, 4, 5]
Elapsed time: 20.0161030293

12 Chapter 2. Quickstart

https://pypi.org/project/pycompss-cli/

COMPSs Documentation, 3.0

Output

$ runcompss -g increment.py

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values

[(433) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—16093e5ac94d67250e097a6fad9d3ec00d676feb¢)

[2, 3, 4, 5]

Elapsed time: 11.5068922043

[(4389) API] - Execution Finished

Nice! it run successfully in my 8 core laptop, we have the expected output, and PyCOMPSs has been able to
run the increment.py application in almost half of the time required by the sequential execution. What happened
under the hood?

COMPSs started a master and one worker (by default configured to execute up to four tasks at the same time)
and executed the application (offloading the tasks execution to the worker).

Let’s check the task dependency graph to see the parallelism that COMPSs has extracted and taken advantage of.

Task dependency graph

COMPSs stores the generated task dependecy graph within the $HOME/ .COMPSs/<APP_NAME>_<00-99>/monitor
directory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot
viewer.

Tip: COMPSs provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/increment.py_01/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

It is also available within the PyCOMPSs CLI:

$ cd $HOME/.COMPSs/increment.py_01/monitor
$ pycompss gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

And you should see:

COMPSs has detected that the increment of each element is independent, and consequently, that all of them can
be done in parallel. In this particular application, there are four increment tasks, and since the worker is able to
run four tasks at the same time, all of them can be executed in parallel saving precious time.

2.2. Write your first app 13

COMPSs Documentation, 3.0

main increment.increment
< ; D
l;
e

Figure 1: The dependency graph of the increment application

Check the performance

Let’s run it again with the tracing flag enabled:

$ runcompss -t increment.py
[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

Welcome to Extrae 3.5.3
[... Extrae prolog ...]

WARNING: COMPSs Properties file is null. Setting default values

[(434) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—1r6093e5ac94d67250e097a6fad9d3ec00d676feb6C)
[2, 3, 4, 5]

Elapsed time: 13.1016821861

[... Extrae eplilog ...]

mpi2prv: Congratulations! ./trace/increment.py_compss_trace_1587562240.prv has been
—generated.

[(24117) API] - Execution Finished

The execution has finished successfully and the trace has been generated in the $HOME/.COMPSs/<APP_NAME>_-
<00-99>/trace directory in prv format, which can be displayed and analysed with PARAVER.

$ cd $HOME/.COMPSs/increment.py_02/trace
$ wxparaver increment.py_compss_trace_*.prv

Note: In the case of using the PyCOMPSs CLI, the trace will be generated in the .COMPSs/<APP_NAME>_-
<00-99>/trace directory:

$ cd .COMPSs/increment.py_02/trace
$ wxparaver increment.py_compss_trace_x.prv

Once Paraver has started, lets visualize the tasks:

14 Chapter 2. Quickstart

https://tools.bsc.es/paraver

COMPSs Documentation, 3.0

e (Click in File and then in Load Configuration
e Look for /PATH/TO/COMPSs/Dependencies/paraver/cfgs/compss_tasks.cfg and click Open.

Note: In the case of using the PyCOMPSs CLI, the configuration files can be obtained by downloading them
from the COMPSs repositoy.

And you should see:

Compss Tasks @ increment.py_compss_trace_1587562240. prv

THREAD

Figure 2: Trace of the increment application

The X axis represents the time, and the Y axis the deployed processes (the first three (1.1.1-1.1.3) belong to
the master and the fourth belongs to the master process in the worker (1.2.1) whose events are shown with the
compss_runtime.cfg configuration file).

The increment tasks are depicted in blue. We can quickly see that the four increment tasks have been executed
in parallel (one per core), and that their lengths are different (depending on the computing time of the task
represented by the time.sleep(value * 2) line).

Paraver is a very powerful tool for performance analysis. For more information, check the Tracing Section.

Note: If you are using the PyCOMPSs CLI, it is time to stop the COMPSs environment:

$ pycompss stop

Application Overview
As in Java, the application code is divided in 3 parts: the Task definition interface, the main code and task
implementations. These files must have the following notation,: <app ame>.idl, for the interface file, <app -

name>.cc for the main code and <app name>-functions.cc for task implementations. Next paragraphs provide
an example of how to define this files for matrix multiplication parallelised by blocks.

Task Definition Interface

As in Java the user has to provide a task selection by means of an interface. In this case the interface file has the
same name as the main application file plus the suffix “idl”, i.e. Matmul.idl, where the main file is called Matmul.cc.

Code 5: Matmul.idl

interface Matmul
{
// C functions
void initMatrix(inout Matrix matrix,
in int mSize,
in int nSize,
in double val);

(continues on next page)

2.2. Write your first app 15

https://github.com/bsc-wdc/compss/tree/stable/files/paraver/cfgs

COMPSs Documentation, 3.0

(continued from previous page)

void multiplyBlocks(inout Block blockl,
inout Block block2,
inout Block block3);
}s

The syntax of the interface file is shown in the previous code. Tasks can be declared as classic C function prototypes,
this allow to keep the compatibility with standard C applications. In the example, initMatrix and multiplyBlocks
are functions declared using its prototype, like in a C header file, but this code is C++ as they have objects as
parameters (objects of type Matrix, or Block).

The grammar for the interface file is:

["static"] return-type task-name (parameter {, parameter }*);
return-type = "void" | type

ask-name = <qualified name of the function or method>

parameter = direction type parameter-name

direction = "in" | "out" | "inout"

type = "char" | "int" | "short" | "long" | "float" | "double" | "boolean" |
"char[<size>]" | "int[<size>]" | "short[<size>]" | "long[<size>]" |
"float[<size>]" | "double[<size>]" | "string" | "File" | class-name

class-name = <qualified name of the class>

Main Program
The following code shows an example of matrix multiplication written in C++.

Code 6: Matrix multiplication

#include "Matmul.h"

#include "Matriz.h"

#include "Block.h"

int N; //MSIZE

int M; //BSIZE

double val;

int main(int argc, char **argv)

{
Matrix A;
Matrix B;
Matrix C;

N = atoi(argv[il);
M = atoi(argv[2]);
val = atof (argv[3]);

compss_on() ;
A = Matrix::init(N,M,val);

initMatrix(&B,N,M,val);

(continues on next page)

16 Chapter 2. Quickstart

COMPSs Documentation, 3.0

(continued from previous page)

initMatrix(&C,N,M,0.0);
cout << "Waiting for initialization...\n";

compss_wait_on(B);
compss_wait_on(C);

cout << "Initialization ends...\n";
C.multiply(A, B);

compss_off () ;
return 0;

The developer has to take into account the following rules:

1. A header file with the same name as the main file must be included, in this case Matmul.h. This header
file is automatically generated by the binding and it contains other includes and type-definitions that are
required.

2. A call to the compss on binding function is required to turn on the COMPSs runtime.

3. Asin C language, out or inout parameters should be passed by reference by means of the “&” operator before
the parameter name.

4. Synchronization on a parameter can be done calling the compss _wait on binding function. The argument
of this function must be the variable or object we want to synchronize.

5. There is an implicit synchronization in the init method of Matrix. It is not possible to know the address
of “A” before exiting the method call and due to this it is necessary to synchronize before for the copy of the
returned value into “A” for it to be correct.

6. A call to the compss _off binding function is required to turn off the COMPSs runtime.

Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#include "Matmul.h"
#include "Matrixz.h"
#include "Block.h'"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
smatrix = Matrix::init(mSize, nSize, val);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*¥block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

2.2. Write your first app 17

COMPSs Documentation, 3.0

Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

Application Compilation

The user command “compss__build _app” compiles both master and worker for a single architecture (e.g. x86-64,
armhf, etc). Thus, whether you want to run your application in Intel based machine or ARM based machine, this
command is the tool you need.

When the target is the native architecture, the command to execute is very simple;

$~/matmul_objects> compss_build_app Matmul

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64//
—jre/lib/amd64/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

[Info] The target host is: x86_64-linux-gnu

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
<0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -oy
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

Application Execution

The following environment variables must be defined before executing a COMPSs C/C++ application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

After compiling the application, two directories, master and worker, are generated. The master directory contains
a binary called as the main file, which is the master application, in our example is called Matmul. The worker
directory contains another binary called as the main file followed by the suffix “-worker”, which is the worker
application, in our example is called Matmul-worker.

The runcompss script has to be used to run the application:

18 Chapter 2. Quickstart

COMPSs Documentation, 3.0

$ runcompss /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The complete list of options of the runcompss command is available in Section Fzecuting COMPSs applications.

Task Dependency Graph

COMPSs can generate a task dependency graph from an executed code. It is indicating by a

$ runcompss -g /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The generated task dependency graph is stored within the $HOME/ . COMPSs/<APP_NAME>_<00-99>/monitor direc-
tory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot viewer.
COMPSs also provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/Matmul_02/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

The following figure depicts the task dependency graph for the Matmul application in its object version with 3x3
blocks matrices, each one containing a 4x4 matrix of doubles. Each block in the result matrix accumulates three
block multiplications, i.e. three multiplications of 4x4 matrices of doubles.

N = 3, Matrix size
M = 4, Block size

Parallel tasks
[3x3] Matrix = 9 blocks

Each hlock
accumulates 3
[4x4] matrix
multiplications

Implicit
synchronization

Explicit
synchronizations

Figure 3: Matmul Execution Graph.

The light blue circle corresponds to the initialization of matrix “A” by means of a method-task and it has an
implicit synchronization inside. The dark blue circles correspond to the other two initializations by means of
function-tasks; in this case the synchronizations are explicit and must be provided by the developer after the task
call. Both implicit and explicit synchronizations are represented as red circles.

Each green circle is a partial matrix multiplication of a set of 3. One block from matrix “A” and the correspondent
one from matrix “B”. The result is written in the right block in “C” that accumulates the partial block multipli-
cations. Each multiplication set has an explicit synchronization. All green tasks are method-tasks and they are
executed in parallel.

2.2. Write your first app 19

COMPSs Documentation, 3.0

2.3 Useful information

Choose your flavour:
Java

Python

C/C++

Syntax detailed information -> Java

Constraint definition -> Constraints

Execution details -> Ezecuting COMPSs applications

Graph, tracing and monitoring facilities -> Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> Java Sample applications

Using COMPSs with persistent storage frameworks (e.g. dataClay, Hecuba) -> Persistent Storage

Syntax detailed information -> Python Binding

Constraint definition -> Constraints

Execution details -> Ezecuting COMPSs applications

Graph, tracing and monitoring facilities -> Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> Python Sample applications

Using COMPSs with persistent storage frameworks (e.g. dataClay, Hecuba) -> Persistent Storage

Syntax detailed information -> C/C++ Binding

Constraint definition -> Constraints

Execution details -> FEzecuting COMPSs applications

Graph, tracing and monitoring facilities -> Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers
Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> C/C++ Sample applications

20 Chapter 2. Quickstart

Chapter 3

Installation and Administration

This section is intended to walk you through the COMPSs installation.

3.1 Dependencies

Next we provide a list of dependencies for installing COMPSs package. The exact names may vary depending
on the Linux distribution but this list provides a general overview of the COMPSs dependencies. For specific
information about your distribution please check the Depends section at your package manager (apt, yum, zypper,
etc.).

Table 1: COMPSs dependencies

Module Dependencies

COMPSs Runtime openjdk-8-jre, graphviz, xdg-utils, openssh-server

COMPSs Python Binding | libtool, automake, build-essential, python (>=3.6), python3-dev, python3-
setuptools

COMPSs C/C++ Bind- | libtool, automake, build-essential, libboost-all-dev, libxml2-dev
ing
COMPSs Tracing libxml2 (>= 2.5), libxml2-dev (>= 2.5), gfortran, papi

Tip: For macOS, we strongly recommend to use the Homebrew package manager, since it includes the majority
of dependencies needed. In other package managers, such as MacPorts, quite some dependencies may be missing
as packages, which will force you to have to install them from their source codes.

As an example for some distributions and versions:
Ubuntu

OpenSuse

Fedora

Debian

CentOS

20.04

18.04

16.04

Ubuntu 20.04 dependencies installation commands:

21

https://brew.sh/

COMPSs Documentation, 3.0

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential,
—python python-dev libpython2.7 python3 python3-dev libboost-serialization-dev libboost-
—iostreams-dev 1libxml2 libxml2-dev csh gfortran libgmp3-dev flex bison texinfo python3-pip,
—libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

Ubuntu 18.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential
—python python-dev libpython2.7 python3 python3-dev libboost-serialization-dev libboost-
—iostreams-dev 1libxml2 libxml2-dev csh gfortran libgmp3-dev flex bison texinfo python3-pip.
—libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

Ubuntu 16.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential,
—python2.7 libpython2.7 libboost-serialization-dev libboost-iostreams-dev 1libxml2 libxml2-
—dev csh gfortran python-pip libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

Tumbleweed
Leap 15.1
42.2

22 Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

OpenSuse Tumbleweed dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel python3 python3-devel python3-decorator,
—1libtool automake libboost_headersl1_71_0-devel libboost_serializationl_71_0 libboost_
—iostreams1_71_0 1libxml2-2 1libxml2-devel tcsh gcc-fortran papi libpapi gcc-c++ libpapi papi,
—papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

OpenSuse Leap 15.1 dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel python-decorator python3 python3-devel python3-
-—~decorator libtool automake libboost_headersl1_66_0-devel libboost_serializationl_66_0
—libboost_iostreams1_66_0 1libxml2-2 libxml2-devel tcsh gcc-fortran papi libpapi gcc-c++(,
—libpapi papi papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

OpenSuse 42.2 dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel libpython2_7-1_0 python-decorator libtool,
—automake boost-devel libboost_serializationl_54_0 libboost_iostreams1_54_0 libxml2-2
—1libxml2-devel tcsh gcc-fortran python-pip papi libpapi gcc-c++ libpapi papi papi-devel gmp-
—devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Warning: OpenSuse provides Python 3.4 from its repositories, which is not supported by the COMPSs
python binding. Please, update Python 3 (python and python-devel) to a higher version if you expect to
install COMPSs from sources.

3.1. Dependencies 23

COMPSs Documentation, 3.0

Alternatively, you can use a virtual environment.

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

32
25

Fedora 32 dependencies installation commands:

$ sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool,
—automake python27 python3 python3-devel boost-devel boost-serialization boost-iostreams,
—1ibxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh Q@development-tools bison flex texinfoy
—papi papi-devel gmp-devel

$ # If the libazml softlink is not created during the installation of libzml2, the COMPSs,
—1installation may fail.

$ # In this case, the softlink has to be created manually with the following command:

$ sudo 1ln -s /usr/include/1libxml2/libxml/ /usr/include/libxml

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/

Fedora 25 dependencies installation commands:

$ sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool,
—automake python python-libs python-pip python-devel python2-decorator boost-devel boost-
—serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcshy
—0development-tools redhat-rpm-config papi

$ # If the libazml softlink is not created during the installation of libzml2, the COMPSs,
—tnstallation may fail.

$ # In this case, the softlink has to be created manually with the following command:

$ sudo 1ln -s /usr/include/1libxml2/libxml/ /usr/include/libxml

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/

24 Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

8

Debian 8 dependencies installation commands:

$ su -

$ echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee /etc/apt/
—sources.list.d/webupd8team-java.list

$ echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee -a /etc/
—apt/sources.list.d/webupd8team-java.list

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886

apt-get update

apt-get install oracle-java8-installer

apt-get install graphviz xdg-utils libtool automake build-essential python python-decorator
—python-pip python-dev libboost-serializationl1.55.0 libboost-iostreams1.55.0 1libxml2 libxml2-
—dev libboost-dev csh gfortran papi-tools

$ wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-
—bin.zip

$ unzip /opt/gradle-5.4.1-bin.zip -d /opt

© H P P

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). A
possible value is the following:

$ echo $JAVA_HOME
/usr/1ib64/jvm/java-openjdk/

So, please, check its location, export this variable and include it into your .bashrc if it is not already available
with the previous command.

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/

7

CentOS 7 dependencies installation commands:

$ sudo rpm -iUvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

$ sudo yum -y update

$ sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool,,
—automake python python-libs python-pip python-devel python2-decorator boost-devel boost-
—serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcshy,
—@development-tools redhat-rpm-config papi

$ sudo pip install decorator

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). A
possible value is the following:

$ echo $JAVA_HOME
/usr/1ib64/jvm/java-openjdk/

So, please, check its location, export this variable and include it into your .bashrec if it is not already available
with the previous command.

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/

3.1. Dependencies 25

COMPSs Documentation, 3.0

macOS Monterey
macOS Monterey dependencies installation commands:

Although many packages can be installed with Homebrew, some of them will have to be installed manually
from their source files. It is also important to mention that, some package names may be slightly different in
Homebrew, compared to Linux distributions, thus, some previous search for equivalences may be required. Our
tested installation sequence was:

$ brew install openjdk@8 graphviz libxslt xmlto libtool automake coreutils util-linux boost
$ sudo 1ln -sfn /usr/local/opt/openjdk@8/libexec/openjdk.jdk /Library/Java/JavaVirtualMachines/
—openjdk-8. jdk

And xdg-utils had to be installed by hand (after installing libxslt and xmlto):

$ export XML_CATALOG_FILES="/usr/local/etc/xml/catalog"
$ git clone git://anongit.freedesktop.org/xdg/xdg-utils
$ cd xdg-utils

$./configure --prefix=/usr/local

$ make ; make install

Warning: Tracing is not yet available for macOS, therefore, its dependencies do not need to be installed.

Attention: Before installing it is also necessary to export the GRADLE_HOME environment variable and include
its binaries path into the PATH environment variable:

$ echo 'export GRADLE_HOME=/opt/gradle-5.4.1' >> ~/.bashrc

$ export GRADLE_HOME=/opt/gradle-5.4.1

$ echo 'export PATH=/opt/gradle-5.4.1/bin:$PATH' >> ~/.bashrc
$ export PATH=/opt/gradle-5.4.1/bin:$PATH

3.1.1 Build Dependencies

To build COMPSs from sources you will also need wget, git and maven (maven web). To install with Pip, pip for
the target Python version is required.

3.1.2 Optional Dependencies

For the Python binding it is recommended to have dill (dill project) and guppy (guppy project)/guppy3 (guppy3
project) installed. The dill package increases the variety of serializable objects by Python (for example: lambda
functions), and the guppy/guppy3 package is needed to use the @local decorator. Both packages can be found in
pyPI and can be installed via pip.

Since it is possible to execute python applications using workers spawning MPI processes instead of multiprocessing,
it is necessary to have openmpi, openmpi-devel and openmpi-libs system packages installed and mpidpy with
pip.

26 Chapter 3. Installation and Administration

https://maven.apache.org/
https://pypi.org/project/dill/
https://pypi.org/project/guppy/
https://pypi.org/project/guppy3/
https://pypi.org/project/guppy3/

COMPSs Documentation, 3.0

3.2 Building from sources

This section describes the steps to install COMPSs from the sources.

The first step is downloading the source code from the Git repository.

$ git clone https://github.com/bsc-wdc/compss.git
$ cd compss

Then, you need to download the embedded dependencies from the git submodules.

$ compss> ./submodules_get.sh
$ compss> ./submodules_patch.sh

Warning: Before running the installation script in macOS distributions, some previous definitions need to
be done:

$ alias readlink=/usr/local/bin/greadlink

$ export LIBTOOL="which glibtool~

$ export LIBTOOLIZE="which glibtoolize"

$ export JAVA_HOME=/usr/local/cellar/openjdk@8/1.8.0+282/1libexec/openjdk.jdk/Contents/Home

Finally you just need to run the installation script. You have two options:
For all users
For the current user

For installing COMPSs for all users run the following command:

$ compss> cd builders/
$ builders> export INSTALL_DIR=/opt/COMPSs/
$ builders> sudo -E ./buildlocal ${INSTALL_DIR}

Attention: Root access is required.

For installing COMPSs for the current user run the following commands:

$ compss> cd builders/
$ builders> INSTALL_DIR=$HOME/opt/COMPSs/
$ builders> ./buildlocal ${INSTALL_DIR}

Warning: In macOS distributions, the System Integrity Protection (SIP) does not allow to modify the
/Systen folder even with root permissions. This means the installation building from sources can only be
installed for the current user.

Tip: The buildlocal script allows to disable the installation of components. The options can be found in the
command help:

$ compss> cd builders/
$ builders> ./buildlocal -h

Usage: ./buildlocal [options] targetDir

(continues on next page)

3.2. Building from sources 27

COMPSs Documentation, 3.0

(continued from previous page)

* Options:
--help, -h

--opts
--version, -V
--monitor, -m

--no-monitor, -M

--bindings, -b
--no-bindings, -B

--pycompss, -p
--no-pycompss, -P

--tracing, -t
--no-tracing, -T

--kafka, -k
--no-kafka, -K

--jacoco, -j
--no-jacoco, -J

--dlb, -d
--no-dlb, -D
--cli, -c

--no-cli, -C

--nothing, -N

--user-exec=<str>

--skip-tests

* Parameters:
targetDir

Print this help message
Show available options

Print COMPSs version

Enable Monitor installation
Disable Monitor installation

Default: true

Enable bindings installation

Disable bindings installation

Default: true

Enable PyCOMPSs installation

Disable PyCOMPSs installation

Default: true

Enable tracing system installation
Disable tracing system installation

Default: true

Enable Kafka module installation
Disable Kafka module installation

Default: true

Enable Jacoco module installation
Disable Jacoco module installation

Default: true

Enable dlb module installation
Disable dlb module installation

Default: true

Enable Command Line Interface module installation
Disable Command Line Interface module installation

Default: true

Disable all previous options

Default: unused

Enables a specific user execution for maven compilation
When used the maven install is not cleaned.

Default: false

Disables MVN unit tests
Default:

COMPSs installation directory

Default: /opt/COMPSs

Warning: Components Tracing, Kafka, Jacoco and DLB cannot be installed in macOS distributions. There-
fore, at least options -T -K -J -D must be used when invoking buildlocal

28

Chapter 3.

Installation and Administration

COMPSs Documentation, 3.0

3.2.1 Post installation

Once your COMPSs package has been installed remember to log out and back in again to end the installation
process.

Caution: Using Ubuntu version 18.04 or higher requires to comment the following lines in your .bashrc in
order to have the appropriate environment after logging out and back again (which in these distributions it
must be from the complete system (e.g. gnome) not only from the terminal, or restart the whole machine).

If not running interactively, don't do anything

case $- in

¥T) 5 # Comment these lines before logging out

*) return;; # from the whole gnome (or restart the machine).
esac

In addition, COMPSs requires ssh passwordless access. If you need to set up your machine for the first time
please take a look at Additional Configuration Section for a detailed description of the additional configuration.

3.3 Pip

3.3.1 Pre-requisites

In order to be able to install COMPSs and PyCOMPSs with Pip, the dependencies (excluding the COMPSs
packages) mentioned in the Dependencies Section must be satisfied (do not forget to have proper JAVA_HOME and
GRADLE_HOME environment variables pointing to the java JDK folder and Gradle home respectively, as well as the
gradle binary in the PATH environment variable) and Python pip.

3.3.2 Installation

Depending on the machine, the installation command may vary. Some of the possible scenarios and their proper
installation command are:

Install systemwide

Install in user local folder

Within a virtual environment

Install systemwide:

$ sudo -E pip install pycompss -v

Attention: Root access is required.

It is recommended to restart the user session once the installation process has finished. Alternatively, the following
command sets all the COMPSs environment in the current session.

$ source /etc/profile.d/compss.sh

Install in user home folder (.local):

3.3. Pip 29

COMPSs Documentation, 3.0

$ pip install pycompss -v

It is recommended to restart the user session once the installation process has finished. Alternatively, the following
command sets all the COMPSs environment.

$ source ~/.bashrc

Within a Python virtual environment:

(virtualenv) $ pip install pycompss -v

In this particular case, the installation includes the necessary variables in the activate script. So, restart the virtual
environment in order to set all the COMPSs environment.

3.3.3 Post installation

If you need to set up your machine for the first time please take a look at Additional Configuration Section for a
detailed description of the additional configuration.

3.4 Supercomputers

The COMPSs Framework can be installed in any Supercomputer by installing its packages as in a normal dis-
tribution. The packages are ready to be reallocated so the administrators can choose the right location for the
COMPSs installation.

However, if the administrators are not willing to install COMPSs through the packaging system, we also provide a
COMPSs zipped file containing a pre-build script to easily install COMPSs. Next subsections provide further
information about this process.

3.4.1 Prerequisites
In order to successfully run the installation script some dependencies must be present on the target machine.
Administrators must provide the correct installation and environment of the following software:

e Autotools
e BOOST
e Java 8 JRE

The following environment variables must be defined:

e JAVA HOME
e BOOST_CPPFLAGS

The tracing system can be enhanced with:

e PAPI, which provides support for harware counters
e MPI, which speeds up the tracing merge (and enables it for huge traces)

30 Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

3.4.2 Installation

To perform the COMPSs Framework installation please execute the following commands:

$ # Check out the last COMPSs release
$ wget http://compss.bsc.es/repo/sc/stable/COMPSs_<version>.tar.gz

$ # Unpackage COMPSs
$ tar -xvzf COMPSs_<version>.tar.gz

$ # Install COMPSs at your preferred target location
$ cd COMPSs
$./install [options] <targetDir> [<supercomputer.cfg>]

$ # Clean downloaded files
rm -r COMPSs
rm COMPSs_<version>.tar.gz

The installation script will install COMPSs inside the given <targetDir> folder and it will copy the
<supercomputer.cfg> as default configuration. It also provides some options to skip the installation of op-
tional features or bound the installation to an specific python version. You can see the available options with the
following command.

$./install --help

Attention: If the <targetDir> folder already exists it will be automatically erased.

After completing the previous steps, administrators must ensure that the nodes have passwordless ssh access. If
it is not the case, please contact the COMPSs team at support-compss@bsc.es.

The COMPSs package also provides a compssenv file that loads the required environment to allow users work more
easily with COMPSs. Thus, after the installation process we recommend to source the <targetDir>/compssenv
into the users .bashre.

Once done, remember to log out and back in again to end the installation process.

3.4.3 Configuration

To maintain the portability between different environments, COMPSs has a pre-built structure of scripts to execute
applications in Supercomputers. For this purpose, users must use the enqueue_compss script provided in the
COMPSs installation and specify the supercomputer configuration with --sc_cfg flag.

When installing COMPSs for a supercomputer, system administrators must define a configuration file for the
specific Supercomputer parameters. This document gives and overview about how to modify the configuration
files in order to customize the enqueue compss for a specific queue system and supercomputer. As overview,
the easier way to proceed when creating a new configuration is to modify one of the configurations provided by
COMPSs. System sdministrators can find configurations for LSF, SLURM, PBS and SGE as well as several
examples for Supercomputer configurations in <installation_dir>/Runtime/scripts/queues. For instance, the
configuration for the MareNostrum IV Supercomputer and the Slurm queue system, can be used as base file for
new supercomputer and queue system cfgs. Sysadmins can modify these files by changing the flags, parameters,
paths and default values that corresponds to your supercomputer. Once, the files have been modified, they must
be copied to the queues folder to make them available to the users. The following paragraph describe more in
detail the scripts and configuration files If you need help, contact support-compss@bsc.es.

3.4. Supercomputers 31

mailto:support-compss@bsc.es
mailto:support-compss@bsc.es

COMPSs Documentation, 3.0

3.4.3.1 COMPSs Queue structure overview

All the scripts and cfg files shown in Figure 4 are located in the <installation_dir>/Runtime/scripts/ folder.
enqueue_compss and launch_compss (launch.sh in the figure) are in the user subfolder and submit.sh and
the cfgs are located in queues. There are two types of cfg files: the queue system cfg files, which are located in
queues/queue_systems; and the supercomputers.cfqg files, which are located in queues/supercomputers.

Figure 4: Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts and in Orange system
dependant scripts

3.4.3.2 Configuration Files

The cfg files contain a set of bash variables which are used by the other scripts. On the one hand, the queue
system cfgs contain the variables to indicate the commands used by the system to submit and spawn processes, the
commands or variables to get the allocated nodes and the directives to indicate the number of nodes, processes,
etc. Below you can see an example of the most important variable definition for Slurm

File: Runtime/scripts/queues/queue_systems/slurm.cfgq

HARBHAARBRHAARRHAARRRHARRRAAARRHS

SUBMISSION VARIABLES

HARRHHAARBRRARBRHAARRIHRAR BRI RERE

Variables to define the queue system directives.

The are built as #${QUEUE_CMD} ${QARG_*}${QUEUE_SEPARATOR}value (submit.sh)
QUEUE_CMD="SBATCH"

SUBMISSION_CMD="sbatch"

SUBMISSION_PIPE="< "

SUBMISSION_HET_SEPARATOR=' : '

SUBMISSION_HET_PIPE=" "

Vartables to customize the commands know job td and allocated nodes (submit.sh)
ENV_VAR_JOB_ID="SLURM_JOB_ID"
ENV_VAR_NODE_LIST="SLURM_JOB_NODELIST"

QUEUE_SEPARATOR=""
EMPTY_WC_LIMIT=":00"

QARG_JOB_NAME="--job-name="
QARG_JOB_DEP_INLINE="false"
QARG_JOB_DEPENDENCY_OPEN="--dependency=afterany:"
QARG_JOB_DEPENDENCY_CLOSE=""

QARG_JOB_0OUT="-0 "

QARG_JOB_ERROR="-e "
QARG_WD="--workdir="
QARG_WALLCLOCK="-t"

(continues on next page)

32 Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

(continued from previous page)

QARG_NUM_NODES="-N"

QARG_NUM_PROCESSES="-n"

QNUM_PROCESSES_VALUE="\$ (expr \${num_nodes} * \${req_cpus_per_nodel})"
QARG_EXCLUSIVE_NODES="--exclusive"

QARG_SPAN=""

QARG_MEMORY="--mem="
QARG_QUEUE_SELECTION="-p "
QARG_NUM_SWITCHES="--gres="
QARG_GPUS_PER_NODE="--gres gpu:"
QARG_RESERVATION="--reservation="
QARG_CONSTRAINTS="--constraint="
QARG_QOS="--qos="
QARG_QVERCOMMIT="--overcommit"
QARG_CPUS_PER_TASK="-c"
QJOB_ID="%J"
QARG_PACKJOB="packjob"

HARARAARRRRRRRRRRRHRRAAAAAARRRRRS

LAUNCH VARIABLES

HARRAAARRRRRRRRRRRRRAAAAAARRRRRE

Variables to customize worker process spawn inside the job (launch_compss)
LAUNCH_CMD="srun"

LAUNCH_PARAMS="-n1 -N1 --nodelist="

LAUNCH_SEPARATOR=""

CMD_SEPARATOR=""

HOSTLIST_CMD="scontrol show hostname"

HOSTLIST_TREATMENT="| awk {' print \$1 '} | sed -e 's/\.["\ 1x//g'"

HARARAAARRRRRRRRRRRARAAAAAARARRRS

QUEUE VARIABLES

- Used in interactive

- Substitute the [JOBID] keyword with the real job identifier dinamically
HARRAARRRRRRRBRRRBRRRRR AR RRRE
QUEUE_JOB_STATUS_CMD="squeue -h -o %T --job %JOBID}"
QUEUE_JOB_RUNNING_TAG="RUNNING"
QUEUE_JOB_NODES_CMD="squeue -h -o %N --job %JOBID}"
QUEUE_JOB_CANCEL_CMD="scancel %JOBID%"
QUEUE_JOB_LIST_CMD="squeue -h -o %i"
QUEUE_JOB_NAME_CMD="squeue -h -o %j --job %JOBID}"

HERBHRRRRHRARRRARRRRARRRARRRRAHH
CONTACT VARIABLES
HURBHRRRBHRRGRRRRRRR AR R AR RRR R G
CONTACT_CMD="ssh"

To adapt this script to your queue system, you just need to change the variable value to the command, argument
or value required in your system. If you find that some of this variables are not available in your system, leave it
empty.

On the other hand, the supercomputers cfg files contains a set of variables to indicate the queue system used by a
supercomputer, paths where the shared disk is mounted, the default values that COMPSs will set in the project
and resources files when they are not set by the user and flags to indicate if a functionality is available or not in a
supercomputer. The following lines show examples of this variables for the MareNostrum IV supercomputer.

File: Runtime/scripts/queues/supercomputers/mn.cfg

(continues on next page)

3.4. Supercomputers 33

COMPSs Documentation, 3.0

(continued from previous page)

HURBHRRRBHRRBRRRARRRRRRRARRRR R G
STRUCTURE VARIABLES
HERARRAARRRAARRAARBRAARRAARRRAHH
QUEUE_SYSTEM="slurm"

HABRBRARRARRERRRARRRRRRRRRARRHERH

ENQUEUE_COMPSS VARIABLES
HABRBBHRBRRBBRRRARB B R BB R BB ARG IR H
DEFAULT_EXEC_TIME=10
DEFAULT_NUM_NODES=2
DEFAULT_NUM_SWITCHES=0
MAX_NODES_SWITCH=18
MIN_NODES_REQ_SWITCH=4
DEFAULT_QUEUE=default
DEFAULT_MAX_TASKS_PER_NODE=-1
DEFAULT_CPUS_PER_NODE=48
DEFAULT_IO_EXECUTORS=0
DEFAULT_GPUS_PER_NODE=0
DEFAULT_FPGAS_PER_NODE=0
DEFAULT_WORKER_IN_MASTER_CPUS=24
DEFAULT_WORKER_IN_MASTER_MEMORY=50000
DEFAULT_MASTER_WORKING_DIR=.
DEFAULT_WORKER_WORKING_DIR=local_disk
DEFAULT_NETWORK=infiniband
DEFAULT_DEPENDENCY_JOB=None
DEFAULT_RESERVATION=disabled
DEFAULT_NODE_MEMORY=disabled
DEFAULT_JVM_MASTER=""
DEFAULT_JVM_WORKERS="-Xms16000m, -Xmx92000m, -Xmn1600m"
DEFAULT_JVM_WORKER_IN_MASTER=""
DEFAULT_QOS=default
DEFAULT_CONSTRAINTS=disabled

HARRHRARBHRARBRRARARRIRARRRHRARERHE
Enabling/disabling passing

requirements to queue system
HARBHAARBHHRAARRHAARRIAARRRHARRRHS
DISABLE_QARG_MEMORY=true
DISABLE_QARG_CONSTRAINTS=false
DISABLE_QARG_QOS=false
DISABLE_QARG_OVERCOMMIT=true
DISABLE_QARG_CPUS_PER_TASK=false
DISABLE_QARG_NVRAM=true
HETEROGENEOUS_MULTIJOB=false

HERARRBARRRAARRAARBRAARRARRRRARH
SUBMISSION VARIABLES
HERBHRRRRHRABHRARRRRARRRARRRR R RS
MINIMUM_NUM_NODES=1
MINIMUM_CPUS_PER_NODE=1
DEFAULT_STORAGE_HOME="null"
DISABLED_STORAGE_HOME="null"

HERBHRRRBHRRBHRARRRRRRRRARRRR GG
LAUNCH VARIABLES
HERBRRAARRRAARRAARBRAARRAARRHRRHH

(continues on next page)

34 Chapter 3.

Installation and Administration

COMPSs Documentation, 3.0

(continued from previous page)

LOCAL_DISK_PREFIX="/scratch/tmp"

REMOTE_EXECUTOR="none" # Disable the ssh spawn at runtime

NETWORK_INFINIBAND_SUFFIX="-ib0" # Hostname suffixz to add in order to use infiniband network
NETWORK_DATA_SUFFIX="-data" # Hostname suffiz to add in order to use data network
SHARED_DISK_PREFIX="/gpfs/"

SHARED_DISK_2_PREFIX="/.statelite/tmpfs/gpfs/"

DEFAULT_NODE_MEMORY_SIZE=92

DEFAULT _NODE_STORAGE_BANDWIDTH=450

MASTER_NAME_CMD=hostname # Command to know the mastername

ELASTICITY_BATCH=true

To adapt this script to your supercomputer, you just need to change the variables to commands paths or values
which are set in your system. If you find that some of this values are not available in your system, leave them
empty or as they are in the MareNostrum IV.

3.4.3.3 How are cfg files used in scripts?

The submit.sh is in charge of getting some of the arguments from enqueue_compss, generating the a temporal job
submission script for the queue system (function create_normal tmp submit) and performing the submission in
the scheduler (function submit). The functions used in submit.sh are implemented in common.sh. If you look at
the code of this script, you will see that most of the code is customized by a set of bash vars which are mainly
defined in the cfg files.

For instance the submit command is customized in the following way:

eval ${SUBMISSION_CMD} ${SUBMISSION_PIPE}${TMP_SUBMIT_SCRIPT}

Where ${SUBMISSION_CMD} and ${SUBMISSION_PIPE} are defined in the queue_system.cfg. So, for the case of
Slurm, at execution time it is translated to something like sbatch < /tmp/tmp_submit_script

The same approach is used for the queue system directives defined in the submission script or in the command to
get the assigned host list.

The following lines show the examples in these cases.

#${QUEUE_CMD} ${QARG_JOB_NAME}${QUEUE_SEPARATOR}${job_name}

In the case of Slurm in MN, it generates something like #SBATCH --job-name=COMPSs

host_1ist=\$ (${HOSTLIST_CMD} \$${ENV_VAR_NODE_LIST}${env_var_suffix} ${HOSTLIST_TREATMENT})

The same approach is used in the launch_compss script where it is using the defined vars to customize the
project.xml and resources.xml file generation and spawning the master and worker processes in the assigned re-
sources.

At first, you should not need to modify any script. The goal of the cfg files is that sysadmins just require to modify
the supercomputers cfg, and in the case that the used queue system is not in the queue_ systems, folder it should
create a new one for the new one.

If you think that some of the features of your system are not supported in the current implementation, please
contact us at support-compss@bsc.es. We will discuss how it should be incorporated in the scripts.

3.4. Supercomputers 35

mailto:support-compss@bsc.es

COMPSs Documentation, 3.0

3.4.4 Post installation

To check that COMPSs Framework has been successfully installed you may run:

$ # Check the COMPSs wversion
$ runcompss -v
COMPSs version <version>

For queue system executions, COMPSs provides several prebuild queue scripts than can be accessible throgh the
enqueue_ compss command. Users can check the available options by running:

$ enqueue_compss -h

Usage: /apps/COMPSs/2.9/Runtime/scripts/user/enqueue_compss [queue_system_options] [COMPSs_
—options] application_name application_arguments

* Options:
General:
--help, -h
--heterogeneous

Queue system configuration:
--sc_cfg=<name>
—exist inside queues/cfgs/

Submission configuration:
General submision arguments:
--exec_time=<minutes>
—minutes)

--job_name=<name>

--queue=<name>
—queue system.

—interactive
--reservation=<name>
--constraints=<constraints>
--qos=<qgos>

--cpus_per_task
—allocate per task.

—in a worker node and
—node respectively.

--job_dependency=<jobID>
—has ended.

--storage_home=<string>
—implementation

--storage_props=<string>

Print this help message
Indicates submission is going to be heterogeneous
Default: Disabled

SuperComputer configuration file to use. Must

Default: default

Expected execution time of the application (in,

Default: 10

Job name

Default: COMPSs

Queue name to submit the job. Depends on the

For example (MN3): bsc_cs | bsc_debug | debug |,

Default: default
Reservation to use when submitting the job.
Default: disabled

Constraints to pass to queue system.

Default: disabled

Quality of Service to pass to the queue system.
Default: default
Number of cpus per task the queue system must

Note that this will be equal to the cpus_per_node
equal to the worker_in_master_cpus in a mastery

Default: false
Postpone job execution until the job dependency

Default: None
Root installation dir of the storage,

Default: null
Absolute path of the storage properties file

(continues on next page)

36

Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

(continued from previous page)

Normal submission arguments:
--num_nodes=<int>

--num_switches=<int>
—for no restrictions.

--agents=<string>
—values: plain|tree

--agents
—classic Master-Worker deployment.

Heterogeneous submission arguments:

--type_cfg=<file_location>
—node type requests

--master=<master_node_type>
—type_cfg flag)
--workers=type_X:nodes,type_Y:nodes
—workers
—type_cfg flag)

Launch configuration:
--cpus_per_node=<int>
--gpus_per_node=<int>
--fpgas_per_node=<int>

--io_executors=<int>

--fpga_reprogram="<string>
—executed to reprogram the FPGA with

—absolute path.

--max_tasks_per_node=<int>
—node

--node_memory=<MB>

--node_storage_bandwidth=<MB>

Mandatory if storage_home is defined

Number of nodes to use
Default: 2
Maximum number of different switches. Select O,

Maximum nodes per switch: 18

Only available for at least 4 nodes.

Default: O

Hierarchy of agents for the deployment. Acceptedy

Default: tree
Deploys the runtime as agents instead of they,

Default: disabled
Location of the file with the descriptions of,

File should follow the following format:
type_XO{

cpus_per_node=24

node_memory=96

¥
type_YO{

X
Node type for the master
(Node type descriptions are provided in the --

Node type and number of nodes per type for the,

(Node type descriptions are provided in the --

Available CPU computing units on each node
Default: 48

Available GPU computing units on each node
Default: O

Available FPGA computing units on each node
Default: O

Number of IO executors on each node
Default: O

Specify the full command that needs to bey

the desired bitstream. The location must be ang

Default:
Maximum number of simultaneous tasks running on a

Default: -1

Maximum node memory: disabled | <int> (MB)
Default: disabled

Maximum node storage bandwidth: <int> (MB)
Default: 450

(continues on next page)

3.4. Supercomputers

37

COMPSs Documentation, 3.0

(continued from previous page)

--network=<name> Communication network for transfers: default |,
—ethernet | infiniband | data.
Default: infiniband

--prolog="<string>" Task to execute before launching COMPSs (Noticey,
—the quotes)
If the task has arguments split them by ",",
—rather than spaces.
This argument can appear multiple times for more,
—than one prolog action
Default: Empty
--epilog="<string>" Task to execute after executing the COMPSsy
—application (Notice the quotes)
If the task has arguments split them by ",",
—rather than spaces.
This argument can appear multiple times for more
—than one epilog action
Default: Empty

--master_working_dir=<path> Working directory of the application
Default:
--worker_working_dir=<name | path> Worker directory. Use: local_disk | shared_disk |
—<path>

Default: local_disk

--worker_in_master_cpus=<int> Maximum number of CPU computing units that they
—master node can run as worker. Cannot exceed cpus_per_node.
Default: 24
--worker_in_master_memory=<int> MB Maximum memory in master node assigned to the

—worker. Cannot exceed the node_memory.
Mandatory if worker_in_master_cpus is specified.
Default: 50000
--worker_port_range=<min>,<max> Port range used by the NIO adaptor at the workerj
—side
Default: 43001,43005
--jvm_worker_in_master_opts="<string>" Extra options for the JVM of the COMPSs Worker in
—the Master Node.

Each option separed by "," and without blank,
—spaces (Notice the quotes)
Default:
--container_image=<path> Runs the application by means of a containery

—engine image
Default: Empty

--container_compss_path=<path> Path where compss is installed in the container
—image
Default: /opt/COMPSs
--container_opts="<string>" Options to pass to the container engine
Default: empty
--elasticity=<max_extra_nodes> Activate elasticity specifiying the maximum extra
—nodes (ONLY AVAILABLE FORM SLURM CLUSTERS WITH NIO ADAPTOR)
Default: O
--automatic_scaling=<bool> Enable or disable the runtime automatic scaling,

— (for elasticity)
Default: true
--jupyter_notebook=<path>, Swap the COMPSs master initialization with,
—jupyter notebook from the specified path.

(continues on next page)

38 Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

(continued from previous page)

--jupyter_notebook
--ipython
—ipython.

Runcompss configuration:

Tools enablers:
--graph=<bool>, --graph, -g

--tracing=<level>, --tracing, -t

Default: false
Swap the COMPSs master initialization withy

Default: empty

Generation of the complete graph (true/false)

When no value is provided it is set to true
Default: false

Set generation of traces and/or tracing level ([,

—true | basic] | advanced | scorep | arm-map | arm-ddt | false)

—traces.

--monitoring=<int>, --monitoring, -m

--external_debugger=<int>,
--external_debugger
—specified port (or 9999 if empty)

--jmx_port=<int>

Runtime configuration options:
--task_execution=<compss|storage>

--storage_impl=<string>

True and basic levels will produce the same(

When no value is provided it is set to 1
Default: O

Period between monitoring samples (milliseconds)
When no value is provided it is set to 2000
Default: O

Enables external debugger connection on they

Default: false
Enable JVM profiling on specified port

Task execution under COMPSs or Storage.
Default: compss
Path to an storage implementation. Shortcut toy

—setting pypath and classpath. See Runtime/storage in your installation folder.

--storage_conf=<path>
--project=<path>

—xml/projects/default_project.xml
--resources=<path>

—xml/resources/default_resources.xml
--lang=<name>

--summary
—the application execution

--log_level=<level>, --debug, -d
—trace

—disabling asserts and __debug__

Advanced options:
--extrae_config_file=<path>

—shared disk between all COMPSs workers.

Path to the storage configuration file

Default: null

Path to the project XML file

Default: /apps/COMPSs/2.9//Runtime/configuration/

Path to the resources XML file
Default: /apps/COMPSs/2.9//Runtime/configuration/

Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java

Displays a task execution summary at the end of,

Default: false
Set the debug level: off | info | api | debug |,

Warning: Off level compiles with -02 optiong

Default: off

Sets a custom extrae config file. Must be in a

Default: null

(continues on next page)

3.4. Supercomputers

39

COMPSs Documentation, 3.0

(continued from previous page)

--trace_label=<string>

—used in the case of tracing is activated.

--comm=<ClassName>
—communications

--conn=<className>
—~the cloud
—DefaultSSHConnector
—DefaultNoSSHConnector
—DefaultSSHConnector
--streaming=<type>
--streaming_master_name=<str>
--streaming_master_port=<int>

--scheduler=<className>

—fifodatalocation.FIFODatalLoctionScheduler

—FIFOScheduler

—FIFODataScheduler

—LIFOScheduler

—TaskScheduler

—LoadBalancingScheduler

—LoadBalancingScheduler
--scheduler_config_file=<path>

—configuration.

--library_path=<path>

—(e.g. Java JVM library, Python library, C

--classpath=<path>
--appdir=<path>

--pythonpath=<path>
—PYTHONPATH

--base_log_dir=<path>

Add a label in the generated trace file. Onlyy,

Default: None
Class that implements the adaptor forg,

Supported adaptors:
es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor

Default: es.bsc.compss.nio.master.NIOAdaptor

Class that implements the runtime connector fory

Supported connectors:
es.bsc.compss.connectors.

L— es.bsc.compss.connectors.
Default: es.bsc.compss.connectors.

Enable the streaming mode for the given type.
Supported types: FILES, OBJECTS, PSCOS, ALL, NONE
Default: NONE
Use an specific streaming master node name.
Default: null
Use an specific port for the streaming master.
Default: null
Class that implements the Scheduler for COMPSs
Supported schedulers:

F—— es.bsc.compss.scheduler.

F—— es.bsc.compss.scheduler.fifonew.

F—— es.bsc.compss.scheduler.fifodatanew.

F—— es.bsc.compss.scheduler.lifonew.

F—— es.bsc.compss.components.impl.

L es.bsc.compss.scheduler.loadbalancing.
Default: es.bsc.compss.scheduler.loadbalancing.
Path to the file which contains the scheduler
Default: Empty
Non-standard directories to search for libraries
binding library)

Default: Working Directory

Path for the application classes / modules
Default: Working Directory

Path for the application class folder.
Default: /home/group/user

Additional folders or paths to add to they

Default: /home/group/user
Base directory to store COMPSs log files (a .

—COMPSs/ folder will be created inside this location)

(continues on next page)

40

Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

(continued from previous page)

Default: User home
--specific_log_dir=<path> Use a specific directory to store COMPSs log,
—files (no sandbox is created)
Warning: Overwrites --base_log_dir option
Default: Disabled

--uuid=<int> Preset an application UUID
Default: Automatic random generation
--master_name=<string> Hostname of the node to run the COMPSs master
Default:
--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor
Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Eachy
—option separed by "," and without blank spaces (Notice the quotes)
Default:
--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Each,

—option separed by "," and without blank spaces (Notice the quotes)
Default: -Xms1024m,-Xmx1024m,-Xmn400m
--cpu_affinity="<string>" Sets the CPU affinity for the workers
Supported options: disabled, automatic, user|
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--gpu_affinity="<string>" Sets the GPU affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_affinity="<string>" Sets the FPGA affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_reprogram="<string>" Specify the full command that needs to bey
—executed to reprogram the FPGA with the desired bitstream. The location must be an absolute,
—path.

Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of,
—different functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input,

—application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile
—at the end of the execution
Default: Empty
--PyObject_serialize=<bool> Only for Python Binding. Enable the object
—serialization to string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent worker,
—in ¢ (true/false).
Default: false
--enable_external _adaptation=<bool> Enable external adaptation. This option will
—disable the Resource Optimizer.
Default: false
--gen_coredump Enable master coredump generation
Default: false

(continues on next page)

3.4. Supercomputers 41

COMPSs Documentation, 3.0

(continued from previous page)

--python_interpreter=<string> Python interpreter to use (python/python2/
—python3) .
Default: python Version: 2
--python_propagate_virtual_environment=<true> Propagate the master virtual environment,
—to the workers (true/false).
Default: true
--python_mpi_worker=<false> Use MPI to run the python worker instead of,
omultiprocessing. (true/false).
Default: false
--python_memory_profile Generate a memory profile of the master.
Default: false

* Application name:
For Java applications: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

* Application arguments:
Command line arguments to pass to the application. Can be empty.

If none of the pre-build queue configurations adapts to your infrastructure (Isf, pbs, slurm, etc.) please contact
the COMPSs team at support-compss@bsc.es to find out a solution.

If you are willing to test the COMPSs Framework installation you can run any of the applications available at our
application repository https://github.com/bsc-wdc/apps. We suggest to run the java simple application following
the steps listed inside its README file.

For further information about either the installation or the usage please check the README file inside the COMPSs
package.

3.5 Additional Configuration

3.5.1 Configure SSH passwordless

By default, COMPSs uses SSH libraries for communication between nodes. Consequently, after COMPSs is
installed on a set of machines, the SSH keys must be configured on those machines so that COMPSs can establish
passwordless connections between them. This requires to install the OpenSSH package (if not present already)
and follow these steps on each machine:

1. Generate an SSH key pair

$ ssh-keygen -t rsa

2. Distribute the public key to all the other machines and configure it as authorized

$ # For every other available machine (MACHINE):
$ scp "/.ssh/id_rsa.pub MACHINE:./myRSA.pub
$ ssh MACHINE "cat ./myRSA.pub >> ~/.ssh/authorized_keys; rm ./myRSA.pub"

3. Check that passwordless SSH connections are working fine

$ # For every other available machine (MACHINE):
$ ssh MACHINE

For example, considering the cluster shown in Figure 5, users will have to execute the following commands to grant
free ssh access between any pair of machines:

42 Chapter 3. Installation and Administration

mailto:support-compss@bsc.es
https://github.com/bsc-wdc/apps

COMPSs Documentation, 3.0

me@localhost:~$ ssh-keygen -t id_rsa

Granting access localhost -> ml.bsc.es

me@localhost:~$ scp ~/.ssh/id_rsa.pub user_ml@ml.bsc.es:./me_localhost.pub

me@localhost:”$ ssh user_ml@ml.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./
—me_localhost.pub"

Granting access localhost -> m2.bsc.es

me@localhost:™$ scp ~/.ssh/id_rsa.pub user_m2@m2.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./
—me_localhost.pub"

me@localhost:”$ ssh user_ml@ml.bsc.es

user_ml@ml.bsc.es:™> ssh-keygen -t id_rsa

user_ml@ml.bsc.es:™> exit

Granting access ml.bsc.es -> localhost

me@localhost:~$ scp user_mi@ml.bsc.es:”/.ssh/id_rsa.pub ~/userml_ml.pub
me@localhost:~$ cat ~/userml_ml.pub >> ~/.ssh/authorized_keys

Granting access ml.bsc.es -> m2.bsc.es

me@localhost:”™$ scp “/userml_ml.pub user_m2@m2.bsc.es:”/userml_ml.pub
me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./userml_ml.pub >> ~/.ssh/authorized_keys; rm ./
—userml_ml.pub"

me@localhost:~$ rm ~/userml_ml.pub

me@localhost:™$ ssh user_m2@m2.bsc.es

user_m2@m2.bsc.es:”> ssh-keygen -t id_rsa

user_m20@m2.bsc.es: "> exit

Granting access m2.bsc.es -> localhost

me@localhost:~$ scp user_m2@ml.bsc.es:”/.ssh/id_rsa.pub ~/userm2_m2.pub
me@localhost:~$ cat ~/userm2_m2.pub >> ~/.ssh/authorized_keys

Granting access m2.bsc.es -> ml.bsc.es

me@localhost:~$ scp ~/userm2_m2.pub user_ml@ml.bsc.es:”/userm2_m2.pub
me@localhost:~$ ssh user_mil@ml.bsc.es "cat ./userm2_m2.pub >> ~/.ssh/authorized_keys; rm ./
—userm2_m2.pub"

me@localhost:™$ rm ~/userm2_m2.pub

me@localhost

~ 7

user_m1@m1l.bsc.es user_m2@m2.bsc.es

Figure 5: Cluster example

3.5. Additional Configuration 43

COMPSs Documentation, 3.0

3.5.2 Configure the COMPSs Cloud Connectors

This section provides information about the additional configuration needed for some Cloud Connectors.

3.5.2.1 OCCI (Open Cloud Computing Interface) connector

In order to execute a COMPSs application using cloud resources, the rOCCI (Ruby OCCI) connector® has to be
configured properly. The connector uses the rOCCI CLI client (upper versions from 4.2.5) which has to be installed
in the node where the COMPSs main application runs. The client can be installed following the instructions detailed
at http://appdb.egi.eu/store/software /rocci.cli

3.6 Configuration Files

The COMPSs runtime has two configuration files: resources.xml and project.xml . These files contain infor-
mation about the execution environment and are completely independent from the application.

For each execution users can load the default configuration files or specify their custom configurations by us-
ing, respectively, the --resources=<absolute_path_to_resources.xml> and the --project=<absolute_path_-
to_project.xml> in the runcompss command. The default files are located in the /opt/COMPSs/Runtime/
configuration/xml/ path.

Next sections describe in detail the resources.xml and the project.xml files, explaining the available options.

3.6.1 Resources file

The resources file provides information about all the available resources that can be used for an execution.
This file should normally be managed by the system administrators. Its full definition schema can be found at
/opt/COMPSs/Runtime/configuration/xml/resources/resource_schema.xsd.

For the sake of clarity, users can also check the SVG schema located at /opt/COMPSs/Runtime/configuration/
xml/resources/resource_schema.svg.

This file contains one entry per available resource defining its name and its capabilities. Administrators can define
several resource capabilities (see example in the next listing) but we would like to underline the importance of
ComputingUnits. This capability represents the number of available cores in the described resource and it is
used to schedule the correct number of tasks. Thus, it becomes essential to define it accordingly to the number of
cores in the physical resource.

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/resources/default_resources.xml
<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Processor Name="P2">
<ComputingUnits>2</ComputingUnits>
</Processor>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>

(continues on next page)

1 https://appdb.egi.eu/store/software/rocci.cli

44 Chapter 3. Installation and Administration

http://appdb.egi.eu/store/software/rocci.cli
https://appdb.egi.eu/store/software/rocci.cli

COMPSs Documentation, 3.0

(continued from previous page)

<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
<Memory>
<8ize>16</Size>
</Memory>
<Storage>
<Size>200.0</Size>
</Storage>
<OperatingSystem>
<Type>Linux</Type>
<Distribution>0penSUSE</Distribution>
</0OperatingSystem>
<Software>
<Application>Java</Application>
<Application>Python</Application>
</Software>
</ComputeNode>
</ResourcesList>

3.6.2 Project file

The project file provides information about the resources used in a specific execution. Consequently, the resources
that appear in this file are a subset of the resources described in the resources.xml file. This file, that contains
one entry per worker, is usually edited by the users and changes from execution to execution. Its full definition
schema can be found at /opt/COMPSs/Runtime/configuration/xml/projects/project_schema.xsd.

For the sake of clarity, users can also check the SVG schema located at /opt/COMPSs/Runtime/configuration/
xml/projects/project_schema.xsd.

We emphasize the importance of correctly defining the following entries:

installDir Indicates the path of the COMPSs installation inside the resource (not necessarily the same than
in the local machine).

User Indicates the username used to connect via ssh to the resource. This user must have passwordless access
to the resource (see Configure SSH passwordless Section). If left empty COMPSs will automatically try to
access the resource with the same username as the one that lauches the COMPSs main application.

LimitOfTasks The maximum number of tasks that can be simultaneously scheduled to a resource. Considering
that a task can use more than one core of a node, this value must be lower or equal to the number of available
cores in the resource.

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/projects/default_project.xml
<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<!-- Description for Master Node -->

<MasterNode></MasterNode>

<!--Description for a physical node-->
<ComputeNode Name="localhost">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
<Application>
<AppDir>/home/user/apps/</AppDir>

(continues on next page)

3.6. Configuration Files 45

COMPSs Documentation, 3.0

(continued from previous page)

<LibraryPath>/usr/lib/</LibraryPath>
<Classpath>/home/user/apps/jar/example. jar</Classpath>
<Pythonpath>/home/user/apps/</Pythonpath>
</Application>
<Limit0fTasks>4</Limit0fTasks>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
<User>user</User>
</Adaptor>
</Adaptors>
</ComputeNode>
</Project>

3.6.3 Configuration examples

In the next subsections we provide specific information about the services, shared disks, cluster and cloud config-
urations and several project.xml and resources.xml examples.

3.6.3.1 Parallel execution on one single process configuration

The most basic execution that COMPSs supports is using no remote workers and running all the tasks internally
within the same process that hosts the application execution. To enable the parallel execution of the application,
the user needs to set up the runtime and provide a description of the resources available on the node. For that
purpose, the user describes within the <MasterNode> tag of the project.xml file the resources in the same way it
describes other nodes’ resources on the using the resources.xml file. Since there is no inter-process communication,
adaptors description is not allowed. In the following example, the master will manage the execution of tasks on
the MainProcessor CPU of the local node - a quad-core amd64 processor at 3.0GHz - and use up to 16 GB of
RAM memory and 200 GB of storage.

<?zml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode>
<Processor Name="MainProcessor">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Memory>
<Size>16</Size>
</Memory>
<Storage>
<Size>200.0</Size>
</Storage>
</MasterNode>
</Project>

If no other nodes are available, the list of resources on the resources.xml file is empty as shown in the following
file sample. Otherwise, the user can define other nodes besides the master node as described in the following

46 Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

section, and the runtime system will orchestrate the task execution on both the local process and on the configured
remote nodes.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
</ResourcesList>

3.6.3.2 Cluster and grid configuration (static resources)

In order to use external resources to execute the applications, the following steps have to be followed:

1. Install the COMPSs Worker package (or the full COMPSs Framework package) on all the new resources.

2. Set SSH passwordless access to the rest of the remote resources.

3. Create the WorkingDir directory in the resource (remember this path because it is needed for the project.
xml configuration).

4. Manually deploy the application on each node.

The resources.xml and the project.xml files must be configured accordingly. Here we provide examples about
configuration files for Grid and Cluster environments.

<?zxml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="hostnamel.domain.es">
<Processor Name="MainProcessor">
<ComputingUnits>4</ComputingUnits>
</Processor>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
</Adaptor>
<Adaptor Name="es.bsc.compss.gat.master.GATAdaptor">
<SubmissionSystem>
<Batch>
<Queue>sequential</Queue>
</Batch>
<Interactive/>
</SubmissionSystem>
<BrokerAdaptor>sshtrilead</BrokerAdaptor>
</Adaptor>
</Adaptors>
</ComputeNode>

<ComputeNode Name="hostname2.domain.es">

</ComputeNode>
</ResourcesList>

=n

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<MasterNode/>

<ComputeNode Name="hostnamel.domain.es">

(continues on next page)

3.6. Configuration Files 47

COMPSs Documentation, 3.0

(continued from previous page)

<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/COMPSsWorkerl/</WorkingDir>
<User>user</User>
<Limit0fTasks>2</Limit0fTasks>
</ComputeNode>
<ComputeNode Name="hostname2.domain.es">

</ComputeNode>
</Project>

3.6.3.3 Shared Disks configuration example

Configuring shared disks might reduce the amount of data transfers improving the application performance. To
configure a shared disk the users must:

1. Define the shared disk and its capabilities
2. Add the shared disk and its mountpoint to each worker
3. Add the shared disk and its mountpoint to the master node

Next example illustrates steps 1 and 2. The <SharedDisk> tag adds a new shared disk named sharedDiskO and
the <AttachedDisk> tag adds the mountpoint of a named shared disk to a specific worker.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<SharedDisk Name="sharedDiskO0">
<Storage>
<Size>100.0</Size>
<Type>Persistent</Type>
</Storage>
</SharedDisk>

<ComputeNode Name="localhost">

<SharedDisks>
<AttachedDisk Name="sharedDiskO">
<MountPoint>/tmp/SharedDisk/</MountPoint>
</AttachedDisk>
</SharedDisks>
</ComputeNode>
</ResourcesList>

On the other side, to add the shared disk to the master node, the users must edit the project.xml file. Next
example shows how to attach the previous sharedDiskO to the master node:

<?zxml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode>
<SharedDisks>
<AttachedDisk Name="sharedDiskO">
<MountPoint>/home/sharedDisk/</MountPoint>
</AttachedDisk>
</SharedDisks>
</MasterNode>

<ComputeNode Name="localhost">

(continues on next page)

48 Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

(continued from previous page)

</ComputeNode>
</Project>

Notice that the resources.xml file can have multiple SharedDisk definitions and that the SharedDisks tag (either
in the resources.xml or in the project.xml files) can have multiple AttachedDisk childrens to mount several
shared disks on the same worker or master.

3.6.3.4 Cloud configuration (dynamic resources)

In order to use cloud resources to execute the applications, the following steps have to be followed:

1. Prepare cloud images with the COMPSs Worker package or the full COMPSs Framework package installed.
2. The application will be deployed automatically during execution but the users need to set up the configuration
files to specify the application files that must be deployed.

The COMPSs runtime communicates with a cloud manager by means of connectors. Each connector implements
the interaction of the runtime with a given provider’s API, supporting four basic operations: ask for the price
of a certain VM in the provider, get the time needed to create a VM, create a new VM and terminate a VM.
This design allows connectors to abstract the runtime from the particular API of each provider and facilitates the
addition of new connectors for other providers.

The resources.xml file must contain one or more <CloudProvider> tags that include the information about a
particular provider, associated to a given connector. The tag must have an attribute Name to uniquely identify
the provider. Next example summarizes the information to be specified by the user inside this tag.

<?zml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<CloudProvider Name="PROVIDER_NAME">
<Endpoint>
<Server>https://PROVIDER_URL</Server>
<ConnectorJar>CONNECTOR_JAR</ConnectorJar>
<ConnectorClass>CONNECTOR_CLASS</ConnectorClass>

</Endpoint>
<Images>
<Image Name="Imagel">
<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
<OperatingSystem>
<Type>Linux</Type>
</0OperatingSystem>
<Software>
<Application>Java</Application>
</Software>
<Price>
<TimeUnit>100</TimeUnit>
<PricePerUnit>36.0</PricePerUnit>
</Price>
</Image>

(continues on next page)

3.6. Configuration Files 49

COMPSs Documentation, 3.0

(continued from previous page)

<Image Name="Image2">

<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
</Image>
</Images>
<InstanceTypes>

<InstanceType Name="Instancel">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Processor Name="P2">
<ComputingUnits>4</ComputingUnits>
</Processor>
<Memory>
<Size>1000.0</Size>
</Memory>
<Storage>
<Size>2000.0</Size>
</Storage>
</InstanceType>
<InstanceType Name="Instance2">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
</Processor>
</InstanceType>
</InstanceTypes>
</CloudProvider>
</ResourcesList>

The project.xml complements the information about a provider listed in the resources.xml file. This file can
contain a <Cloud> tag where to specify a list of providers, each with a <CloudProvider> tag, whose name attribute
must match one of the providers in the resources.xml file. Thus, the project.xml file must contain a subset
of the providers specified in the resources.xml file. Next example summarizes the information to be specified by
the user inside this <Cloud> tag.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<Cloud>
<InitialVMs>1</InitialVMs>
<MinimumVMs>1</MinimumVMs>
<MaximumVMs>4</MaximumVMs>
<CloudProvider Name="PROVIDER_NAME">
<Limit0fVMs>4</Limit0fVMs>
<Properties>

(continues on next page)

50 Chapter 3. Installation and Administration

COMPSs Documentation, 3.0

(continued from previous page)

<Property Context="C1">
<Name>P1</Name>
<Value>Vi</Value>

</Property>

<Property>
<Name>P2</Name>
<Value>V2</Value>

</Property>

</Properties>

<Images>
<Image Name="Imagel">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
<User>user</User>
<Application>
<Pythonpath>/home/user/apps/</Pythonpath>
</Application>
<Limit0fTasks>2</Limit0fTasks>
<Package>
<Source>/home/user/apps/</Source>
<Target>/tmp/Worker/</Target>
<IncludedSoftware>
<Application>Java</Application>
<Application>Python</Application>
</IncludedSoftware>
</Package>
<Package>
<Source>/home/user/apps/</Source>
<Target>/tmp/Worker/</Target>
</Package>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
</Image>
<Image Name="Image2">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
</Image>
</Images>
<InstanceTypes>
<InstanceType Name="Instancel"/>
<InstanceType Name="Instance2"/>
</InstanceTypes>
</CloudProvider>

<CloudProvider Name="PROVIDER_NAME2">

(continues on next page)

3.6.

Configuration Files 51

COMPSs Documentation, 3.0

(continued from previous page)

</CloudProvider>
</Cloud>
</Project>

For any connector the Runtime is capable to handle the next list of properties:

Table 2: Connector supported properties in the project.xml file

Name Description

provider-user Username to login in the provider
provider-user-credential | Credential to login in the provider
time-slot Time slot

estimated-creation-time | Estimated VM creation time
max-vm-creation-time Maximum VM creation time

Additionally, for any connector based on SSH, the Runtime automatically handles the next list of properties:

Table 3: Properties supported by any SSH based connector in the
project.xml file

Name Description
vm-user User to login in the VM
vm-password Password to login in the VM

vm-keypair-name Name of the Keypair to login in the VM
vm-keypair-location | Location (in the master) of the Keypair to login in the VM

Finally, the next sections provide a more accurate description of each of the currently available connector and its
specific properties.

Cloud connectors: rOCCI

The connector uses the rOCCI binary client! (version newer or equal than 4.2.5) which has to be installed in the
node where the COMPSs main application is executed.

This connector needs additional files providing details about the resource templates available on each provider. This
file is located under <COMPSs_INSTALL_DIR>/configuration/xml/templates path. Additionally, the user must
define the virtual images flavors and instance types offered by each provider; thus, when the runtime decides the
creation of a VM, the connector selects the appropriate image and resource template according to the requirements
(in terms of CPU, memory, disk, etc) by invoking the rOCCI client through Mixins (heritable classes that override
and extend the base templates).

Table 4 contains the rOCCI specific properties that must be defined under the Provider tag in the project.xml
file and Table 5 contains the specific properties that must be defined under the Instance tag.

1 https://appdb.egi.eu/store/software/rocci.cli

52 Chapter 3. Installation and Administration

https://appdb.egi.eu/store/software/rocci.cli

COMPSs Documentation,

3.0

Table 4: rOCCI extensions in the project.xml file

Name Description

auth Authentication method, x509 only supported
user-cred Path of the VOMS proxy

ca-path Path to CA certificates directory

ca-file Specific CA filename

owner Optional. Used by the PMES Job-Manager

jobname Optional. Used by the PMES Job-Manager

timeout Maximum command time

username Username to connect to the back-end cloud provider
password Password to connect to the back-end cloud provider
voms Enable VOMS authentication

media-type Media type

resource Resource type

attributes Extra resource attributes for the back-end cloud provider
context Extra context for the back-end cloud provider

action Extra actions for the back-end cloud provider

mixin Mixin definition

link Link

trigger-action | Adds a trigger

log-to Redirect command logs

skip-ca-check | Skips CA checks

filter Filters command output

dump-model | Dumps the internal model

debug Enables the debug mode on the connector commands
verbose Enables the verbose mode on the connector commands

Table 5: Configuration of the <resources>.xml templates file

Instance | Multiple entries of resource templates.

Type Name of the resource template. It has to be the same name than in the previous files
CPU Number of cores

Memory | Size in GB of the available RAM

Disk Size in GB of the storage

Price Cost per hour of the instance

Cloud connectors: JClouds

The JClouds connector is based on the JClouds API version 1.9.1. Table Table 6 shows the extra available options

under the Properties tag that are used by this connector.

Table 6: JClouds extensions in the <project>.xml file

Instance | Description

provider | Back-end provider to use with JClouds (i.e. aws-ec2)

3.6. Configuration Files

53

COMPSs Documentation, 3.0

Cloud connectors: Docker

This connector uses a Java API client from https://github.com/docker-java/docker-java, version 3.0.3. It has not
additional options. Make sure that the image/s you want to load are pulled before running COMPSs with docker
pull IMAGE. Otherwise, the connectorn will throw an exception.

Cloud connectors: Mesos

The connector uses the v0 Java API for Mesos which has to be installed in the node where the COMPSs main
application is executed. This connector creates a Mesos framework and it uses Docker images to deploy workers,
each one with an own IP address.

By default it does not use authentication and the timeout timers are set to 3 minutes (180.000 milliseconds). The
list of optional properties available from connector is shown in Table 7.

Table 7: Mesos connector options in the <project>.xml file

Instance
mesos-framework-name
mesos-woker-name

Description
Framework name to show in Mesos.
Worker names to show in Mesos.

mesos-framework-hostname

Framework hostname to show in Mesos.

mesos-checkpoint

Checkpoint for the framework.

mesos-authenticate

Uses authentication? (true/false)

mesos-principal

Principal for authentication.

mesos-secret

Secret for authentication.

mesos-framework-register-timeout

Timeout to wait for Framework to register.

mesos-framework-register-timeout-units

Time units to wait for register.

mesos-worker-wait-timeout

Timeout to wait for worker to be created.

mesos-worker-wait-timeout-units

Time units for waiting creation.

mesos-worker-kill-timeout

Number of units to wait for killing a worker.

mesos-worker-kill-timeout-units

Time units to wait for killing.

mesos-docker-command

Command to use at start for each worker.

mesos-containerizer

Containers to use: (MESOS/DOCKER)

mesos-docker-network-type

Network type to use: (BRIDGE/HOST/USER)

mesos-docker-network-name

Network name to use for workers.

mesos-docker-mount-volume

Mount volume on workers? (true/false)

mesos-docker-volume-host-path

Host path for mounting volume.

mesos-docker-volume-container-path

Container path to mount volume.

TimeUnit avialable values: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, SECONDS.

3.6.3.5 Services configuration

To allow COMPSs applications to use WebServices as tasks, the resources.xml can include a special type of
resource called Service. For each WebService it is necessary to specify its wsdl, its name, its namespace and its
port.

<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">

</ComputeNode>
<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobj7wsdl">

<Name>HmmerObjects</Name>
<Namespace>http://hmmerobj.worker</Namespace>

(continues on next page)

54 Chapter 3. Installation and Administration

https://github.com/docker-java/docker-java

COMPSs Documentation, 3.0

(continued from previous page)

<Port>HmmerObjectsPort</Port>
</Service>
</ResourcesList>

When configuring the project.xml file it is necessary to include the service as a worker by adding an special entry
indicating only the name and the limit of tasks as shown in the following example:

<?zxml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<MasterNode/>

<ComputeNode Name="localhost">

</ComputeNode>

<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobjrwsdl">
<Limit0fTasks>2</Limit0fTasks>
</Service>
</Project>

3.6.3.6 HTTP configuration

To enable execution of HT'TP tasks, Hittp resources must be included in the resources file as shown in the
following example. Please note that the BaseUrl attribute is the unique identifier of each Http resource. However,
it’s possible to assign a single resource to multiple services and in the same way one service can be executed on
various resources.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">

</ComputeNode>

<Http BaseUrl="http://remotehost:1992/test/">
<ServiceName>service_1</ServiceName>
<ServiceName>service_2</ServiceName>
</Http>

<Http BaseUrl="http://remotehost:2020/print/">
<ServiceName>service_2</ServiceName>
<ServiceName>service_3</ServiceName>
</Http>

</ResourcesList>

Configuration of the project file must have the Http worker(s) as well, in order to let the runtime know limit of
tasks to be executed in parallel on resources.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<MasterNode/>

<ComputeNode Name="localhost">

</ComputeNode>

<Http BaseUrl="http://remotehost:1992/test/">

(continues on next page)

3.6. Configuration Files 55

COMPSs Documentation, 3.0

(continued from previous page)

<LimitO0fTasks>1</Limit0fTasks>
</Http>

<Http BaseUrl="http://remotehost:2020/print/">
<Limit0fTasks>1</Limit0fTasks>
</Http>

</Project>

56 Chapter 3. Installation and Administration

Chapter 4

Application development

This section is intended to walk you through the development of COMPSs applications.

4.1 Java

This section illustrates the steps to develop a Java COMPSs application, to compile and to execute it. The Simple
application will be used as reference code. The user is required to select a set of methods, invoked in the sequential
application, that will be run as remote tasks on the available resources.

4.1.1 Programming Model

This section shows how the COMPSs programming model is used to develop a Java task-based parallel application
for distributed computing. First, We introduce the structure of a COMPSs Java application and with a simple
example. Then, we will provide a complete guide about how to define the application tasks. Finally, we will show
special API calls and other optimization hints.

4.1.1.1 Application Overview

A COMPSs application is composed of three parts:

e Main application code: the code that is executed sequentially and contains the calls to the user-selected
methods that will be executed by the COMPSs runtime as asynchronous parallel tasks.

e Remote methods code: the implementation of the tasks.

e Task definition interface: It is a Java annotated interface which declares the methods to be run as remote
tasks along with metadata information needed by the runtime to properly schedule the tasks.

The main application file name has to be the same of the main class and starts with capital letter, in this
case it is Simple.java. The Java annotated interface filename is application name + Itf.java, in this case it is
Simpleltf.java. And the code that implements the remote tasks is defined in the application name + Impl.java
file, in this case it is SimpleImpl.java.

All code examples are in the /home/compss/tutorial_apps/java/ folder of the development environment.

57

COMPSs Documentation, 3.0

Main application code

In COMPSs, the user’s application code is kept unchanged, no API calls need to be included in the main application

code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the creation of
remote tasks also taking care of the access to files where required. Let’s consider the Simple application example

that takes an integer as input parameter and increases it by one unit.

The main application code of Simple application is shown in the following code block. It is executed sequentially
until the call to the increment() method. COMPSs, as mentioned above, replaces the call to this method with

the generation of a remote task that will be executed on an available node.

Code 7: Simple in Java (Simple.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import simple.SimpleImpl;

public class Simple {

public static void main(String[] args) {

X
}

String counterName = '"counter";
int initialValue = args[0];

F A e L e L LT //
// Creation of the file which will contain the counter variable //
2 //
try {

FileOutputStream fos = new FileOutputStream(counterName) ;
fos.write(initialValue) ;
System.out.println("Initial counter value is " + initialValue);
fos.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

F R e e L L E L LT //
// Ezecution of the program //
/e //
SimpleImpl.increment (counterName) ;

F A e e T //
// Reading from an object stored in a File //
/e //
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());
fis.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

58

Chapter 4. Application development

COMPSs Documentation, 3.0

Remote methods code

The following code contains the implementation of the remote method of the Simple application that will be
executed remotely by COMPSs.

Code 8: Simple Implementation (Simplelmpl.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;

import java.io.IOException;
import java.io.FileNotFoundException;

public class SimpleImpl {
public static void increment(String counterFile) {
try{
FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close();
FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count) ;
fos.close();
}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();
}catch(IOException ioe){
ioe.printStackTrace();
}
}
}

Task definition interface

This Java interface is used to declare the methods to be executed remotely along with Java annotations that specify
the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String type are
supported) and its directions (IN, OUT, INOUT, COMMUTATIVE or CONCURRENT).

2. The Java class that contains the code of the method.

3. The constraints that a given resource must fulfill to execute the method, such as the number of processors
or main memory size.

The task description interface of the Simple app example is shown in the following figure. It includes the description
of the Increment() method metadata. The method interface contains a single input parameter, a string containing
a path to the file counterFile. In this example there are constraints on the minimum number of processors and
minimum memory size needed to run the method.

Code 9: Interface of the Simple application (Simpleltf.java)

package simple;

import es.bsc.compss.types.annotations.Constraints;

import es.bsc.compss.types.annotations.task.Method;

import es.bsc.compss.types.annotations.Parameter;

import es.bsc.compss.types.annotations.parameter.Direction;
import es.bsc.compss.types.annotations.parameter.Type;

public interface SimpleItf {

(continues on next page)

4.1. Java 59

COMPSs Documentation, 3.0

(continued from previous page)

@Constraints(computingUnits = "1", memorySize = "0.3")
@Method(declaringClass = "simple.SimpleImpl")
void increment(
O@Parameter (type = Type.FILE, direction = Direction.INOUT)
String file
)3

The following sections show a detailed guide of how to implement complex applications.

4.1.1.2 Task definition reference guide

The task definition interface is a Java annotated interface where developers define tasks as annotated methods in
the interfaces. Annotations can be of three different types:

1.

Task-definition annotations are method annotations to indicate which type of task is a method declared in
the interface.

. The Parameter annotation provides metadata about the task parameters, such as data type, direction and

other property for runtime optimization.

The Constraints annotation describes the minimum capabilities that a given resource must fulfill to execute
the task, such as the number of processors or main memory size.

The Prolog/Epilog annotations are definitions of binaries to be run before/after the task execution.
Scheduler hint annotation provides information about how to deal with tasks of this type at scheduling and
execution.

A complete and detailed explanation of the usage of the metadata includes:

Task-definition Annotations

For each declared methods, developers has to define a task type. The following list enumerates the possible task
types:
e @Method: Defines the Java method as a task

— declaringClass (Mandatory) String specifying the class that implements the Java method.

— targetDirection This field specifies the direction of the target object of an object method. It can be
defined as: INOUT” (default value) if the method modifies the target object, “CONCURRENT” if this
object modification can be done concurrently, or “IN” if the method does not modify the target object.
0.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

— onFailure Expected behaviour if the task fails. OnFuailure. RETRY (default value) makes the task be
executed again, OnFailure. CANCEL SUCCESSORS ignores the failure and cancels the succesor tasks,
OnFailure. FAIL stops the whole application in a save mode once a task fails or OnFailure. IGNORE
ignores the failure and continues with normal runtime execution.

e @Binary: Defines the Java method as a binary invokation

— binary (Mandatory) String defining the full path of the binary that must be executed.

— workingDir Full path of the binary working directory inside the COMPSs Worker.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @QMPI: Defines the Java method as a MPI invokation

— mpiRunner (Mandatory) String defining the mpi runner command.

— binary (Mandatory) String defining the full path of the binary that must be executed.

— processes String defining the number of MPI processes spawn in the task execution. This can be
combined with the constraints annotation to create define a MPI+OpenMP task. (Default is 1)

60

Chapter 4. Application development

COMPSs Documentation, 3.0

— scaleByCU It indicates that the defined processes will be scaled by the defined computingUnits in
the constraints. So, the total MPI processes will be processes multiplied by computingUnits. This
functionality is used to groups MPI processes per node. Number of groups will be set in processes and
the number of processes per node will be indicated by computingUnits

— workingDir Full path of the binary working directory inside the COMPSs Worker.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @OmpSs: Defines the Java method as a OmpSs invokation

— binary (Mandatory) String defining the full path of the binary that must be executed.

— workingDir Full path of the binary working directory inside the COMPSs Worker.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @Http: It specifies the HTTP task properties.

— serviceName Mandatory. Name of the HI'TP Service that included at least one HT'TP resource in
the resources file.

— resource Mandatory. URL extension to be concatenated with HT'TP resource’s base URL.

— request Mandatory. Type of the HTTP request (GET, POST, etc.).

— payload Payload string of POST requests if any. Payload strings can contain any kind of a COMPSs
Parameter as long as it is defined between double curly brackets as ‘{{parameter name}}’. File pa-
rameters can also be used simply by including only the file parameter name.

— payloadType Payload type of POST requests (e.g: ‘application/json’).

— produces In case of JSON responses, produces string can be used as a template to define 2 things; the
first one is where the return value(s) is (are) stored in the retrieved JSON string. Returns are meant to
be defined as ‘{{return_0}}’,’{{return_1}}’, etc. And the second one is for additional parameters to
be used ‘updates’ string. The user assign a value from the JSON response to a parameter and use that
param to update an INOUT dictionary.

— updates (PyCOMPSs only) In case of INOUT dictionaries, the user can update the INOUT dict with
a value extracted from the JSON response.

For task which are not methods, a representative method has to be defined in an specific class depending on the
task type (binary.BINARY in the case of binary tasks, mpi.MPI for mpi tasks, ...). This is required just for
compilation and to enable the invocation of the task from the main code, the runtime will substitute this code by
the real execution of the defined task. An example of this representative method can be found in Code 10

Code 10: Representative method for an MPI task

package mpi;

public class MPI {
public static int mpiExecution(int i, String outFile) {
// Nothing to do
return 0

}

Parameter-level annotations

For each parameter of task (method declared in the interface), the user must include a @Parameter annotation.
The properties

e Direction: Describes how a task uses the parameter (Default is IN).

— Direction.IN: Task only reads the data.

— Direction.INOUT: Task reads and modifies

— Direction.OUT: Task completely modify the data, or previous content or not modified data is not
important.

— Direction. COMMUTATIVE: An INOUT usage of the data which can be re-ordered with other
executions of the defined task.

— Direction. CONCURRENT: The task allow concurrent modifications of this data. It requires a
storage backend that manages concurrent modifications.

4.1. Java 61

COMPSs Documentation, 3.0

e Type: Describes the data type of the task parameter. By default, the runtime infers the type according to

the Java datatype. However, it is mandatory to define it for files, directories and Streams.
COMPSs supports the following types for task parameters:

— Basic types: To indicate a parameter is a Java primitive type use the follwing types: Type. BOOLEAN,
Type.CHAR, Type.BYTE, Type.SHORT, Type.INT, Type. LONG, Type. FLOAT, Type. DOUBLE. They
can only have IN direction, since primitive types in Java are always passed by value.

— String: To indicate a parameter is a Java String use Type.STRING. It can only have IN direction,
since Java Strings are immutable.

— File: The real Java type associated with a file parameter is a String that contains the path to the file.
However, if the user specifies a parameter as Type. FILE, COMPSs will treat it as such. It can have any
direction (IN, OUT, INOUT, CONMMUTATIVE or CONCURRENT).

— Directory: The real Java type associated with a directory parameter is a String that contains the path
to the directory. However, if the user specifies a parameter as Type. DIRECTORY, COMPSs will treat
it as such. It can have any direction (IN, OUT, INOUT, CONMMUTATIVE or CONCURRENT).

— Object: An object parameter is defined with Type.Object. It can have any direction (IN, INOUT,
COMMUTATIVE or CONCURRENT).

— Streams: A Task parameters can be defined as stream with Type.STREAM. It can have direction IN,
if the task pull data from the stream, or OUT if the task pushes data to the stream.

Return type: Any object or a generic class object. In this case the direction is always OUT. Basic types are
also supported as return types. However, we do not recommend to use them because they cause an implicit
synchronization

StdIOStream: For non-native tasks (binaries, MPI, and OmpSs) COMPSs supports the auto-
matic redirection of the Linux streams by specifying StdIOStream.STDIN, StdIOStream.STDOUT or
StdIOStream.STDERR. Notice that any parameter annotated with the stream annotation must be of type
Type. FILE, and with direction Direction.IN for StdIOStream.STDIN or Direction.OUT/ Direction.INOUT
for StdIOStream.STDOUT and StdIOStream.STDERR.

Prefix: For non-native tasks (binaries, MPI, and OmpSs) COMPSs allows to prepend a constant String to
the parameter value to use the Linux joint-prefixes as parameters of the binary execution.

Weight: Provides a hint of the size of this parameter compared to a default one. For instance, if a parameters
is 3 times larger than the others, set the weigh property of this paramenter to 3.0. (Default is 1.0).
keepRename: Runtime rename files to avoid some data dependencies. It is transparent to the final user
because we rename back the filename when invoking the task at worker. This management creates an
overhead, if developers know that the task is not name nor extension sensitive (i.e can work with rename),
they can set this property to true to reduce the overhead.

Constraints annotations

e @Constraints: The user can specify the capabilities that a resource must have in order to run a method.

For example, in a cloud execution the COMPSs runtime creates a VM that fulfils the specified requirements
in order to perform the execution. A full description of the supported constraints can be found in Table 14.

Prolog & Epilog annotations

e @Prolog: Defines a binary to be run right before the task execution.

— binary: the binary to be executed.

— params: describe the command line arguments of the binary.

— failByExitValue: is used to indicate the behaviour when the prolog or epilog returns an exit value
different than zero. Users can set the ~failByExitValue™ to True, if they want to consider the exit
value as a task failure.

e @Epilog: Defines a binary to be run right after the task execution finishes.

— binary , params, failByExitValue with the same behaviours as Prolog.

62

Chapter 4. Application development

COMPSs Documentation, 3.0

Scheduler annotations

e @SchedulerHints: It specifies hints for the scheduler about how to treat the task.
— isReplicated “true” if the method must be executed in all the worker nodes when invoked from the
main application (it is a String not a Java boolean).
— isDistributed “true” if the method must be scheduled in a forced round robin among the available
resources (it is a String not a Java boolean).

4.1.1.3 Alternative method implementations

Since version 1.2, the COMPSs programming model allows developers to define sets of alternative implementations
of the same method in the Java annotated interface. Code 11 depicts an example where the developer sorts
an integer array using two different methods: merge sort and quick sort that are respectively hosted in the
packagepath. Mergesort and packagepath. Quicksort classes.

Code 11: Alternative sorting method definition example

@Method (declaringClass = "packagepath.Mergesort")

@Method (declaringClass = "packagepath.Quicksort")

void sort(
OParameter (type = Type.0OBJECT, direction = Direction.INOUT)
int[] array

)

As depicted in the example, the name and parameters of all the implementations must coincide; the only difference
is the class where the method is implemented. This is reflected in the attribute declaringClass of the @Method
annotation. Instead of stating that the method is implemented in a single class, the programmer can define several
instances of the @Method annotation with different declaring classes.

As independent remote methods, the sets of equivalent methods might have common restrictions to be fulfilled
by the resource hosting the execution. Or even, each implementation can have specific constraints. Through
the @Constraints annotation, developers can specify the common constraints for a whole set of methods. In the
following example (Code 12) only one core is required to run the method of both sorting algorithms.

Code 12: Alternative sorting method definition with constraint
example

OConstraints(computingUnits = "1")

@Method(declaringClass = '"packagepath.Mergesort")

@Method (declaringClass = "packagepath.Quicksort")

void sort(
QParameter (type = Type.OBJECT, direction = Direction.INOUT)
int[] array

)

However, these sorting algorithms have different memory consumption, thus each algorithm might require a specific
amount of memory and that should be stated in the implementation constraints. For this purpose, the developer
can add a @Constraints annotation inside each @Method annotation containing the specific constraints for that
implementation. Since the Mergesort has a higher memory consumption than the quicksort, the Code 13 sets a
requirement of 1 core and 2GB of memory for the mergesort implementation and 1 core and 500MB of memory
for the quicksort.

Code 13: Alternative sorting method definition with specific con-
straints example

OConstraints(computingUnits = "1")
@Method(declaringClass = "packagepath.Mergesort", constraints = Q@Constraints(memorySize = "2.0
t_)ll))

(continues on next page)

4.1. Java 63

COMPSs Documentation, 3.0

(continued from previous page)

@Method (declaringClass = "packagepath.Quicksort", constraints = Q@Constraints(memorySize = "0.5
%ll))
void sort(

OParameter(type = Type.OBJECT, direction = Direction.INOUT)

int[] array

)

4.1.1.4 Java API calls
COMPSs also provides a explicit synchronization call, namely barrier, which can be used through the COMPSs
Java, API. The use of barrier forces to wait for all tasks that have been submitted before the barrier is called.

When all tasks submitted before the barrier have finished, the execution continues (Code 14).

Code 14: COMPSs.barrier() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {

// Setup counterNamel and counterName2 files
// Ezxecute task increment 1
SimpleImpl.increment (counterNamel) ;
// API Call to watit for all tasks
COMPSs.barrier();
// Execute task increment 2
SimpleImpl.increment(counterName2);

When an object is used in a task, COMPSs runtime store the references of these object in the runtime data
structures and generate replicas and versions in remote workers. COMPSs is automatically removing these replicas
for obsolete versions. However, the reference of the last version of these objects could be stored in the runtime
data-structures preventing the garbage collector to remove it when there are no references in the main code. To
avoid this situation, developers can indicate the runtime that an object is not going to use any more by calling the
deregisterObject API call. Code 15 shows a usage example of this API call.

Code 15: COMPSs.deregisterObject() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {

final int ITERATIONS = 10;

for (int i = 0; i < ITERATIONS; ++i) {
Dummy d = new Dummy(d);
TaskImpl.task(d);
/*41lows garbage collector to delete the

object from memory when the task is finished */

COMPSs.deregisterObject ((Object) d);

To synchronize files, the getFile API call synchronizes a file, returning the last version of file with its original name.
Code 16 contains an example of its usage.

64 Chapter 4. Application development

COMPSs Documentation, 3.0

Code 16: COMPSs.getFile() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {
for (int i=0; i<1; i++) {
TaskImpl.task(FILE_NAME, i);
}
/*Watts until all tasks have finished and
synchronizes the file with its last version*/

COMPSs.getFile (FILE_NAME) ;

4.1.1.5 Managing Failures in Tasks
COMPSs provide mechanism to manage failures in tasks. Developers can specify two properties in the task
definition what the runtime should do when a task is blocked or failed.

The timeQut property indicates the runtime that a task of this type is considered failed when its duration is larger
than the value specified in the property (in seconds)

The onFailure property indicates what to do when a task of this type is failed. The possible values are:

e OnFaiure. RETRY (Default): The task is executed twice in the same worker and a different worker.

o OnFuailure. CANCEL SUCCESSORS: All successors of this task are canceled.

e OnFuailure. FAIL: The task failure produces a failure of the whole application.

e OnFailure. IGNORE: The task failure is ignored and the output parameters are set with empty values.

Usage examples of these properties are shown in Code 17

Code 17: Failure example

public interface FailuresItf{
@Method(declaringClass = "example.Example", timeQut = "3000", onFailure = OnFailure.IGNORE)
void task_example(@Parameter(type = Type.FILE, direction = Direction.0UT) String fileName);

4.1.1.6 Tasks Groups and COMPSs exceptions

COMPSs allows users to define task groups which can be combined with an special exception (COMPSsException)
that the user can use to achieve parallel distributed try/catch blocks; Code 18 shows an example of COMPSsEz-
ception raising. In this case, the group definition is blocking, and waits for all task groups to finish. If a task
of the group raises a COMPSsFEzception, it will be captured by the runtime which reacts to it by canceling the
running and pending tasks of the group and forwarding the COMPSsException to enable the execution except
clause. Consequenty, the COMPSsException must be combined with task groups.

Code 18: COMPSs Exception example

try (COMPSsGroup a = new COMPSsGroup("GroupA")) {
for (int j = 0; j < N; j++) {
Test.taskWithCOMPSsException(FILE_NAME) ;
}
} catch (COMPSsException e) {
Test.otherTask (FILE_NAME) ;

(continues on next page)

4.1. Java 65

COMPSs Documentation, 3.0

(continued from previous page)

It is possible to use a non-blocking task group for asynchronous behaviour (see Code 19). In this case, the
try/catch can be defined later in the code surrounding the COMPSs.barrierGroup, enabling to check exception
from the defined groups without retrieving data while other tasks are being executed.

Code 19: COMPSs Exception example

for (int i=0; i<10; i++){
try (COMPSsGroup a = new COMPSsGroup("Group" + i, false)) {
for (int j = 0; j < N; j++) {
Test.taskWithCOMPSsException (FILE_NAME) ;
}
} catch (Exception e) {
//This ts just for comptilation. Ezception mot catch here!
}
}
for (int i=0; i<10; i++){
// The group exception will be thrown from the barrier
try {
COMPSs.barrierGroup("FailedGroup2") ;
} catch (COMPSsException e) {
System.out.println("Exception caught in barrier!!");
Test.otherTask (FILE_NAME) ;

Attention: Method tasks are executed on top of Java threads, to perform a secure cancellation of a running
task in a thread when using the time timeout property and COMPSsExceptions, you have to use the *COMPSs-
Worker.cancellationPoint method to indicate the points where it is secure to cancel a task. When the task
code reaches this method, it will check if the current task must be cancelled and perform a save cancellation,
otherwise it will continue with this. An example about how to use the cancellation point is shown in Code 20

Code 20: COMPSs Exception example

import es.bsc.compss.worker.COMPSsWorker;
public class TasksImpl {

public static void cancellableTask(String fileName) throws Exception {
boolean condition = treu
while (condition) {
COMPSsWorker.cancellationPoint () ;
condition = computelteration(...);

66 Chapter 4. Application development

COMPSs Documentation, 3.0

4.1.2 Application Compilation

A COMPSs Java application needs to be packaged in a jar file containing the class files of the main code, of
the methods implementations and of the I#f annotation. This jar package can be generated using the commands
available in the Java SDK or creating your application as a Apache Maven project.

To integrate COMPSs in the maven compile process you just need to add the compss-api artifact as dependency
in the application project.

<dependencies>
<dependency>
<groupIld>es.bsc.compss</groupld>
<artifactId>compss-api</artifactId>
<version>${compss.version}</version>
</dependency>
</dependencies>

To build the jar in the maven case use the following command

$ mvn package

Next we provide a set of commands to compile the Java Simple application (detailed at Java Sample applications).

$ cd tutorial_apps/java/simple/src/main/java/simple/
$~/tutorial_apps/java/simple/src/main/java/simple$ javac *.java
$~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
$~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple/
$~/tutorial_apps/java/simple/src/main/java$ mv ./simple.jar ../../../jar/

In order to properly compile the code, the CLASSPATH variable has to contain the path of the compss-engine.jar
package. The default COMPSs installation automatically add this package to the CLASSPATH; please check
that your environment variable CLASSPATH contains the compss-engine.jar location by running the following
command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine.jar package in
your classpath. We recommend to automatically load the variable by editing the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

If you are using an IDE (such as Eclipse or NetBeans) we recommend you to add the compss-engine.jar file as an
external file to the project. The compss-engine.jar file is available at your current COMPSs installation under the
following path: /opt/COMPSs/Runtime/compss-engine.jar

Please notice that if you have performed a custom installation, the location of the package can be different.

4.1.3 Application Execution

A Java COMPSs application is executed through the runcompss script. An example of an invocation of the script
is:

$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar simple.Simple 1

A comprehensive description of the runcompss command is available in the Executing COMPSs applications section.

In addition to Java, COMPSs supports the execution of applications written in other languages by means of
bindings. A binding manages the interaction of the no-Java application with the COMPSs Java runtime, providing
the necessary language translation.

4.1. Java 67

COMPSs Documentation, 3.0

4.2 Python Binding

COMPSs features a binding for Python 2 and 3 applications. The next subsections explain how to program a
Python application for COMPSs and a brief overview on how to execute it.

4.2.1 Programming Model

The programming model for Python is structured in the following sections:

4.2.1.1 Task Definition

The task definition is structured in the following sections:

Task Selection

As in the case of Java, a COMPSs Python application is a Python sequential program that contains calls to tasks.
In particular, the user can select as a task:

e Functions
e Instance methods: methods invoked on objects
e (Class methods: static methods belonging to a class

The task definition in Python is done by means of Python decorators instead of an annotated interface. In partic-
ular, the user needs to add a @task decorator that describes the task before the definition of the function/method.

As an example (Code 21), let us assume that the application calls a function foo, which receives a file path (file_-
path — string parameter) and a string parameter (value). The code of foo appends the value into file_path.

Code 21: Python application example

def foo(file_path, value):
" Update the file 'file_path' with the 'value'"""
with open(file_path, "a") as fd:
fd.write(value)

def main():
my_file = "sample_file.txt"
with open(my_file, "w") as fd:
fd.write("Hello")
foo(my_file, "World")

if __name == '__main_

main()

In order to select foo as a task, the corresponding @task decorator needs to be placed right before the definition
of the function, providing some metadata about the parameters of that function. The @task decorator has to be
imported from the pycompss library (Code 22).

Code 22: Python task import

from pycompss.api.task import task

Otask(metadata)
def foo(parameters):

See complete example

68 Chapter 4. Application development

COMPSs Documentation, 3.0

Code 23: Python application example with @task definition

from pycompss.api.task import task
from pycompss.api.parameter import FILE_INOUT

Otask(file_path=FILE_INOUT)
def foo(file_path, value):
" Update the file 'file_path' with the 'value'"""
with open(file_path, "a") as fd:
fd.write(value)

def main():
my_file = "sample_file.txt"
with open(my_file, "w") as fd:
fd.write("Hello")
foo(my_file, "World")

if __name__ == '__main__"':
main()

Tip: The PyCOMPSs task api also provides the @task decorator in camelcase (@Task) with the same functionality.

The rationale of providing both @task and @Task relies on following the PEP8 naming convention. Decorators are
usually defined using lowercase, but since the task decorator is implemented following the class pattern, its name
is also available as camelcase.

Important: The file that contains tasks definitions MUST ONLY contain imports or the if __name__ ==
"__main__" section at the root level. For example, Code 22 includes only the import for the task decorator, and

the main code is included into the main function.

The rationale of this is due to the fact that the module is loaded from PyCOMPSs. Since the code included at the
root level of the file is executed when the module is loaded, this causes the execution to crash.

Function parameters

The @task decorator does not interfere with the function parameters, Consequently, the user can define the function
parameters as normal python functions (Code 24).

Code 24: Task function parameters example

Q@task()
def foo(paraml, param2):

The use of *args and **kwargs as function parameters is supported (Code 25).

Code 25: Python task *args and **kwargs example

Otask(returns=int)
def argkwarg_foo(xargs, **kwargs):

And even with other parameters, such as usual parameters and default defined arguments. Code 26 shows an
example of a task with two three parameters (whose one of them (s) has a default value (2)), *args and **kwargs.

4.2. Python Binding 69

COMPSs Documentation, 3.0

Code 26: Python task with default parameters example

Otask(returns=int)
def multiarguments_foo(v, w, s=2, *args, *xkwargs):

Tasks within classes

Functions within classes can also be declared as tasks as normal functions. The main difference is the existence of
the self parameter which enables to modify the callee object.

For tasks corresponding to instance methods, by default the task is assumed to modify the callee object (the object
on which the method is invoked). The programmer can tell otherwise by setting the target_direction argument
of the @task decorator to IN (Code 27).

Code 27: Python instance method example

class MyClass(object):

Otask(target_direction=IN)
def instance_method(self):
self is NOT modified here

Class methods and static methods can also be declared as tasks. The only requirement is to place the @classmethod
or @staticmethod over the @task decorator (Code 28). Note that there is no need to use the target_direction
flag within the @task decorator.

Code 28: Python @classmethod and @staticmethod tasks exam-
ple

class MyClass(object):

Q@classmethod
Otask()
def class_method(cls, a, b, c):

@staticmethod
Otask(returns=int)
def static_method(a, b, c):

Tip: Tasks inheritance and overriding supported!!!

Caution: The objects used as task parameters MUST BE serializable:

e Implement the __getstate__ and __setstate__ functions in their classes for those objects that are not
automatically serializable.

e The classes must not be declared in the same file that contains the main method (if __name__ ==

'__main__") (known pickle issue).

Important: For instances of user-defined classes, the classes of these objects should have an empty constructor,
otherwise the programmer will not be able to invoke task instance methods on those objects (Code 29).

70 Chapter 4. Application development

COMPSs Documentation, 3.0

Code 29: Using user-defined classes as task returns

In file utils.py
from pycompss.api.task import task
class MyClass(object):
def __init__(self): # empty constructor

Qtask()
def yet_another_task(self):
do something with the self attributes

In file main.py
from pycompss.api.task import task
from utils import MyClass

Otask(returns=MyClass)
def ret_foo():

myc = MyClass()
return myc
def main():
o = ret_foo()
tnvoking a task instance method on a future object can only

#
be done when an empty constructor is defined in the object's
class

o

.yet_another_task()

if __name__=='__main__"':
main()

See complete example

Code 30: utils.py

from pycompss.api.task import task
class MyClass(object):

def __init__(self):
" Initializes self.value with 0 """
self.value = 0O

Q@task()

def yet_another_task(self):
" Imcrements self.value """
self.value = self.value + 1

Code 31: main.py

from pycompss.api.task import task
from utils import MyClass

(continues on next page)

4.2. Python Binding 71

COMPSs Documentation, 3.0

(continued from previous page)

from pycompss.api.api import compss_wait_on

Otask(returns=MyClass)
def ret_foo():
myc = MyClass()
return myc

def main(Q):
o = ret_foo()
o.yet_another_task()
o = compss_wait_on(o)
print("Value: %d" % o.value)
if __name__=='__main__"':
main()

Task Parameters

The metadata corresponding to a parameter is specified as an argument of the @task decorator, whose name is the
formal parameter’s name and whose value defines the type and direction of the parameter. The parameter types
and directions can be:

Types
Primitive types (integer, long, float, boolean, strings)
Objects (instances of user-defined classes, dictionaries, lists, tuples, complex numbers)
Files
Collections (instances of lists)
Dictionaries (instances of dictionary)
Streams
e JO streams (for binaries)
Direction
e Read-only (IN - default or IN_DELETE)
Read-write (INOUT)
Write-only (0UT)
Concurrent (CONCURRENT)
Commutative (COMMUTATIVE)

COMPSs is able to automatically infer the parameter type for primitive types, strings and objects, while the user
needs to specify it for files. On the other hand, the direction is only mandatory for INOUT, OUT, CONCURRENT and
COMMUTATIVE parameters.

Note: Please note that in the following cases there is no need to include an argument in the @task decorator for
a given task parameter:

e Parameters of primitive types (integer, long, float, boolean) and strings: the type of these parameters can
be automatically inferred by COMPSs, and their direction is always IN.

e Read-only object parameters: the type of the parameter is automatically inferred, and the direction defaults
to IN.

The parameter metadata is available from the pycompss library (Code 32)

Code 32: Python task parameters import

from pycompss.api.parameter import *

72 Chapter 4. Application development

COMPSs Documentation, 3.0

Objects

The default type for a parameter is object. Consequently, there is no need to use a specific keyword. However, it
is necessary to indicate its direction (unless for input parameters):

PARAME- DESCRIPTION

TER

IN The parameter is read-only. The type will be inferred.

IN_DELETE The parameter is read-only. The type will be inferred. Will be automatically removed after its
usage.

INQUT The parameter is read-write. The type will be inferred.

ouT The parameter is write-only. The type will be inferred.

CONCURRENT | The parameter is read-write with concurrent access. The type will be inferred.

COMMUTATIVE | The parameter is read-write with commutative access. The type will be inferred.

Continuing with the example, in Code 33 the decorator specifies that foo has a parameter called obj, of type object
and INOUT direction. Note how the second parameter, i, does not need to be specified, since its type (integer) and
direction (IN) are automatically inferred by COMPSs.

Code 33:

Python task example with input output object (INOUT)

and input object (IN)

from pycompss.api.task import task
from pycompss.api.parameter import INOUT, IN

Otask(obj=INOUT, i=IN)
def foo(obj, i):

The previous task definition can be simplified due to the default IN direction for objects (Code 34):

Code 34:

Python task example with input output object (INOUT)

simplified

from pycompss.api.task import task
from pycompss.api.parameter import INOUT

@task (obj=INOUT)
def foo(obj, i):

Tip:

In order to choose the apropriate direction, a good exercise is to think if the function only consumes the

object (IN), modifies the object (INOUT), or produces an object (OUT).

Tip:

The IN_DELETE definition is intended to one use objects. Consequently, the information related to the

object will be released as soon as possible.

The user can also define that the access to a object is concurrent with CONCURRENT (Code 35). Tasks that share
a CONCURRENT parameter will be executed in parallel, if any other dependency prevents this. The CONCURRENT
direction allows users to have access from multiple tasks to the same object/file during their executions.

4.2. Python Binding

73

COMPSs Documentation, 3.0

Code 35: Python task example with CONCURRENT

from pycompss.api.task import task
from pycompss.api.parameter import CONCURRENT

O@task (obj=CONCURRENT)
def foo(obj, i):

Caution: COMPSs does not manage the interaction with the objects used/modified concurrently. Taking
care of the access/modification of the concurrent objects is responsibility of the developer.

Or even, the user can also define that the access to a parameter is commutative with COMMUTATIVE (Code 36).
The execution order of tasks that share a COMMUTATIVE parameter can be changed by the runtime following the
commutative property.

Code 36: Python task example with COMMUTATIVE

from pycompss.api.task import task
from pycompss.api.parameter import COMMUTATIVE

Otask (obj=COMMUTATIVE)
def foo(obj, i):

Files

It is possible to define that a parameter is a file (FILE), and its direction:

PARAMETER DESCRIPTION

FILE/FILE_IN The parameter is a file. The direction is assumed to be IN.
FILE_INOUT The parameter is a read-write file.

FILE_OUT The parameter is a write-only file.

FILE_CONCURRENT The parameter is a concurrent read-write file.
FILE_COMMUTATIVE | The parameter is a commutative read-write file.

Continuing with the example, in Code 37 the decorator specifies that foo has a parameter called £, of type FILE
and INOUT direction (FILE_INOUT).

Code 37: Python task example with input output file (FILE_INOUT)

from pycompss.api.task import task
from pycompss.api.parameter import FILE_INOUT

Otask (f=FILE_INOUT)

def foo(f):
fd = open(f, 'a+')
append something to fd
fd.close()

def main():
f = "/path/to/file.extension"

(continues on next page)

74 Chapter 4. Application development

COMPSs Documentation, 3.0

(continued from previous page)

Populate f
foo(f)

Tip: The value for a FILE (e.g. f) is a string pointing to the file to be used at foo task. However, it can also be
None if it is optional. Consequently, the user can define task that can receive a FILE or not, and act accordingly.
For example (Code 38):

Code 38: Python task example with optional input file (FILE_IN)

from pycompss.api.task import task
from pycompss.api.parameter import FILE_IN

Otask (f=FILE_IN)
def foo(f):
if f:
Do something with the file
with open(f, 'r') as fd:
num_lines = len(rd.readlines())
return num_lines
else:
Do something when there ts no input file
return -1

def main():
f = "/path/to/file.extension"
Populate f
num_lines_f
g = None
num_lines_g = foo(g) # num_lines_g == -

Il

foo(f) # num_lines_f == actual number of lines of file.extension

The user can also define that the access to file parameter is concurrent with FILE_CONCURRENT (Code 39). Tasks
that share a FILE_CONCURRENT parameter will be executed in parallel, if any other dependency prevents this. The
CONCURRENT direction allows users to have access from multiple tasks to the same file during their executions.

Code 39: Python task example with FILE_CONCURRENT

from pycompss.api.task import task
from pycompss.api.parameter import FILE_CONCURRENT

Otask (f=FILE_CONCURRENT)
def foo(f, i):

Caution: COMPSs does not manage the interaction with the files used /modified concurrently. Taking care
of the access/modification of the concurrent files is responsibility of the developer.

Or even, the user can also define that the access to a parameter is a file FILE_COMMUTATIVE (Code 40). The
execution order of tasks that share a FILE_COMMUTATIVE parameter can be changed by the runtime following the
commutative property.

4.2. Python Binding 75

COMPSs Documentation, 3.0

Code 40: Python task example with FILE_COMMUTATIVE

from pycompss.api.task import task
from pycompss.api.parameter import FILE_COMMUTATIVE

Otask (f=FILE_COMMUTATIVE)
def foo(f, i):

Directories

In addition to files, it is possible to define that a parameter is a directory (DIRECTORY), and its direction:

PARAMETER | DESCRIPTION

DIRECTORY_- | The parameter is a directory and the direction is IN. The directory will be compressed before
IN any transfer amongst nodes.

DIRECTORY_- | The parameter is a read-write directory. The directory will be compressed before any transfer
INOUT amongst nodes.

DIRECTORY_- | The parameter is a write-only directory. The directory will be compressed before any transfer
ouT amongst nodes.

The definition of a DIRECTORY parameter is shown in Code 41. The decorator specifies that foo has a parameter
called d, of type DIRECTORY and INOUT direction.

Code 41: Python task example with input output directory
(DIRECTORY_INOUT)

from pycompss.api.task import task
from pycompss.api.parameter import DIRECTORY_INOUT

Otask (d=DIRECTORY_INOUT)
def foo(d):

Collections

It is possible to specify that a parameter is a collection of elements (e.g. list) and its direction.

PARAMETER DESCRIPTION

COLLECTION_IN The parameter is read-only collection.

COLLECTION_IN_- The parameter is read-only collection for single usage (will be automatically removed
DELETE after its usage).

COLLECTION_INQUT The parameter is read-write collection.

COLLECTION_OUT The parameter is write-only collection.

In this case (Code 42), the list may contain sub-objects that will be handled automatically by the runtime. It is
important to annotate data structures as collections if in other tasks there are accesses to individual elements of
these collections as parameters. Without this annotation, the runtime will not be able to identify data dependences
between the collections and the individual elements.

76 Chapter 4. Application development

COMPSs Documentation, 3.0

Code 42: Python task example with COLLECTION (IN)

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION

Otask(my_collection=COLLECTION)
def foo(my_collection):
for element in my_collection:

Caution: The current support for collections is limited to static number of elements lists.

Consequently, the length of the collection must be kept during the execution, and it is NOT possible to append
or delete elements from the collection in the tasks (only to receive elements or to modify the existing if they
are not primitives).

The sub-objects of the collection can be collections of elements (and recursively). In this case, the runtime also
keeps track of all elements contained in all sub-collections. In order to improve the performance, the depth of the
sub-objects can be limited through the use of the depth parameter (Code 43)

Code 43: Python task example with COLLECTION_IN and Depth

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION_IN

Otask(my_collection={Type:COLLECTION_IN, Depth:2})
def foo(my_collection):
for inner_collection in my_collection:
for element in inner_collection:
The contents of element will not be tracked

Tip: A collection can contain dictionaries, and will be analyzed automatically.

Tip: If the collection is intended to be used only once with IN direction, the COLLECTION_IN_DELETE type is
recommended, since it automatically removes the entire collection after the task. This enables to release as soon
as possible memory and storage.

Collections of files

It is also possible to specify that a parameter is a collection of files (e.g. list) and its direction.

PARAMETER DESCRIPTION

COLLECTION_FILE/COLLECTION_FILE_IN | The parameter is read-only collection of files.
COLLECTION_FILE_INOUT The parameter is read-write collection of files.
COLLECTION_FILE_OUT The parameter is write-only collection of files.

In this case (Code 44), the list may contain files that will be handled automatically by the runtime. It is important
to annotate data structures as collections if in other tasks there are accesses to individual elements of these
collections as parameters. Without this annotation, the runtime will not be able to identify data dependences
between the collections and the individual elements.

4.2. Python Binding 77

COMPSs Documentation, 3.0

Code 44: Python task example with COLLECTION_FILE (IN)

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION_FILE

Otask(my_collection=COLLECTION_FILE)
def foo(my_collection):
for file in my_collection:

The file of the collection can be collections of elements (and recursively). In this case, the runtime also keeps track
of all files contained in all sub-collections. In order to improve the performance, the depth of the sub-files can be
limited through the use of the depth parameter as with objects (Code 43)

Caution: The current support for collections of files is also limited to a static number of elements, as
with Collections.

Dictionaries

It is possible to specify that a parameter is a dictionary of elements (e.g. dict) and its direction.

PARAMETER DESCRIPTION

DICTIONARY_IN The parameter is read-only dictionary.

DICTIONARY_IN_- The parameter is read-only dictionary for single usage (will be automatically removed
DELETE after its usage).

DICTIONARY_INOUT The parameter is read-write dictionary.

As with the collections, it is possible to specify that a parameter is a dictionary of elements (e.g. dict) and its direc-
tion (DICTIONARY IN or DICTIONARY INOUT) (Code 45), whose sub-objects will be handled automatically
by the runtime.

Code 45: Python task example with DICTIONARY (IN)

from pycompss.api.task import task
from pycompss.api.parameter import DICTIONARY

Otask(my_dictionary=DICTIONARY)
def foo(my_dictionary):
for k, v in my_dictionary.items():

Caution: The current support for dictionaries is also limited to a static number of elements, as with
Collections.

The sub-objects of the dictionary can be collections or dictionary of elements (and recursively). In this case, the
runtime also keeps track of all elements contained in all sub-collections/sub-dictionaries. In order to improve the
performance, the depth of the sub-objects can be limited through the use of the depth parameter (Code 46)

Code 46: Python task example with DICTIONARY_IN and Depth

from pycompss.api.task import task
from pycompss.api.parameter import DICTIONARY_IN

(continues on next page)

78 Chapter 4. Application development

COMPSs Documentation, 3.0

(continued from previous page)

Otask(my_dictionary={Type:DICTIONARY_IN, Depth:2})
def foo(my_dictionary):
for key, inner_dictionary in my_dictionary.items():
for sub_key, sub_value in inner_dictionary.items():
The contents of element will not be tracked

Tip: A dictionary can contain collections, and will be analyzed automatically.

Tip: If the dictionary is intended to be used only once with IN direction, the DICTIONARY_IN_DELETE type is
recommended, since it automatically removes the entire dictionary after the task. This enables to release as soon
as possible memory and storage.

Streams

It is possible to use streams as input or output of the tasks by defining that a parameter is STREAM and its direction.

PARAMETER | DESCRIPTION
STREAM_IN The parameter is a read-only stream.
STREAM_QUT The parameter is a write-only stream.

For example, Code 47 shows an example using STREAM_IN or STREAM_QUT parameters This parameters enable to
mix a task-driven workflow with a data-driven workflow.

Code 47: Python task example with STREAM_IN and STREAM_QUT

from pycompss.api.task import task
from pycompss.api.parameter import STREAM_IN
from pycompss.api.parameter import STREAM_OUT

Otask(ods=STREAM_OUT)
def write_objects(ods):

for i in range(NUM_OBJECTS):
Build object
obj = MyObject()
Publish object
ods.publish(obj)

Mark the stream for closure
ods.close()

Otask(ods=STREAM_IN, returns=int)
def read_objects(ods):

num_total = 0

while not ods.is_closed():
Poll new objects
new_objects = ods.poll()
Process files

(continues on next page)

4.2. Python Binding 79

COMPSs Documentation, 3.0

(continued from previous page)

Accumulate read files
num_total += len(new_objects)

Return the number of processed files
return num_total

The stream parameter also supports Files (Code 48).

Code 48: Python task example with STREAM_IN and STREAM_OUT
for files

from pycompss.api.task import task
from pycompss.api.parameter import STREAM_IN
from pycompss.api.parameter import STREAM_OUT

Otask (fds=STREAM_OUT)
def write_files(fds):

for i in range(NUM_FILES):
file_name = str(uuid.uuid4())
Write file
with open(file_path, 'w') as f:
f.write("Test " + str(i))

Mark the stream for closure
fds.close()

Otask(fds=STREAM_IN, returns=int)
def read_files(fds):

num_total = 0
while not fds.is_closed():
Poll new files
new_files = fds.poll()
Process files
for nf in new_files:
with open(nf, 'r') as f:

Accumulate read files

num_total += len(new_files)

Return the number of processed files
return num_total

In addition, the stream parameter can also be defined for binary tasks (Code 49).

Code 49: Python task example with STREAM_OUT for binaries

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import STREAM_OUT

@binary(binary="file_generator.sh")
Otask (£ds=STREAM_QUT)

(continues on next page)

80 Chapter 4. Application development

COMPSs Documentation, 3.0

(continued from previous page)

def write_files(fds):
Equivalent to: ./file_generator.sh > fds
pass

Standard Streams

Finally, a parameter can also be defined as the standard input, standard output, and standard error.

PARAMETER | DESCRIPTION

STDIN The parameter is a IO stream for standard input redirection.
STDOUT The parameter is a IO stream for standard output redirection.
STDERR The parameter is a IO stream for standard error redirection.

Caution: STDIN, STDOUT and STDERR are only supported in binary tasks

This is particularly useful with binary tasks that consume/produce from standard IO streams, and the user wants
to redirect the standard input/output/error to a particular file. Code 50 shows an example of a binary task that
invokes output generator.sh which produces the result in the standard output, and the task takes that output and
stores it into fds.

Code 50: Python task example with STDOUT for binaries

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import STDOUT

@binary (binary="output_generator.sh")

Otask (£ds=STDOUT)

def write_files(fds):
Equivalent to: ./file_generator.sh > fds
pass

Other Task Parameters
Task time out

The user is also able to define the time out of a task within the @task decorator with the time_out=<TIME_IN_-
SECONDS> hint. The runtime will cancel the task if the time to execute the task exceeds the time defined by the
user. For example, Code 51 shows how to specify that the unknown_duration_task maximum duration before
canceling (if exceeded) is one hour.

4.2. Python Binding 81

COMPSs Documentation, 3.0

Code 51: Python task time_out example

Otask(time_out=3600)
def unknown_duration_task(self):

Scheduler hints

The programmer can provide hints to the scheduler through specific arguments within the @task decorator.

For instance, the programmer can mark a task as a high-priority task with the priority argument of the @task
decorator (Code 52). In this way, when the task is free of dependencies, it will be scheduled before any of the
available low-priority (regular) tasks. This functionality is useful for tasks that are in the critical path of the
application’s task dependency graph.

Code 52: Python task priority example

Otask(priority=True)
def func(:

Moreover, the user can also mark a task as distributed with the is_ distributed argument or as replicated with
the is_replicated argument (Code 53). When a task is marked with is_distributed=True, the method must be
scheduled in a forced round robin among the available resources. On the other hand, when a task is marked with
is_replicated=True, the method must be executed in all the worker nodes when invoked from the main application.
The default value for these parameters is False.

Code 53: Python task is distributed and is_replicated examples

Otask(is_distributed=True)
def func():

Otask(is_replicated=True)
def func2():

On failure task behaviour

In case a task fails, the whole application behaviour can be defined using the @on_ failure decorator on top of the
@task decorator (Code 54). It has four possible values that can be defined with the management parameter:
‘RETRY’, "CANCEL _SUCCESSORS’, ’FAIL’ and IGNORE’. 'RETRY” is the default behaviour, making
the task to be executed again (on the same worker or in another worker if the failure remains). ’CANCEL -
SUCCESSORS’ ignores the failed task and cancels the execution of the successor tasks, 'FAIL’ stops the whole
execution once a task fails and TGNORE’ ignores the failure and continues with the normal execution.

Code 54: Python task @on_ failure decorator example

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure

Qon_failure(management ='CANCEL_SUCCESSORS')
Qtask()
def func():

82 Chapter 4. Application development

COMPSs Documentation, 3.0

Since the "CANCEL SUCCESSORS’ and ’YIGNORE’ policies enable to continue the execution accepting
that tasks may have failed, it is possible to define the value for the objects and/or files produced by the failed tasks
(INOUT, OUT, FILE INOUT, FILE _OUT and return). This is considered as the default output objects/files.
For example, Code 55 shows a the func task which returns one integer. In the case of failure within func, the
execution of the workflow will continue since the on failure management policy is set to IGNORE’, with 0 as
return value.

Code 55: Python task @on_ failure example with default return
value

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure

Qon_failure(management='IGNORE', returns=0)
Otask(returns=int)
def func(:

For the INOUT parameters, the default value can be set by using the parameter name of func in the @on_ failure
decorator. Code 56 shows how to define the default value for a FILE INOUT parameter (named f_inout). The
example is also valid for FILE OUT values.

Code 56: Python task @on_ failure example with default FILE -
INOUT value

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure
from pycompss.api.parameter import FILE_INOUT

Q@on_failure(management='IGNORE', f_inout="/path/to/default.file")
@task(f_inout=FILE_INOUT)
def func(f_inout):

Tip: The default FILE _INOUT/FILE OUT can be generated at task generation time by calling a function
instead of providing a static file path. Code 57 shows an example of this case, where the default value for the
output file produced by func is defined by the generate_empty function.

4.2. Python Binding 83

COMPSs Documentation, 3.0

Code 57: Python task @on_ failure example with default FILE -
OUT value from function

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure
from pycompss.api.parameter import FILE_OUT

def generate_empty(msg, name):

empty_file =

"/tmp/empty_file_" + name
with open(empty_file,

'w') as f:

f.write("EMPTY FILE " + msg)

return empty_file

Q@on_failure(management='IGNORE', f_out=generate_empty("OUT", "out.tmp"))

Otask (f_out=FILE_0UT)
def func(f_inout):

Task Parameters Summary

Table 8 summarizes all arguments that can be found in the @task decorator.

Table 8: Arguments of the @task decorator

Argument Value

Formal parameter name | (default: empty) The parameter is an object or a simple
IN Read-only parameter, all types.
IN DELETE Read-only parameter, all types. Autom:
INOUT Read-write parameter, all types except |
ouT Write-only parameter, all types except f
CONCURRENT Concurrent read-write parameter, all ty;
COMMUTATIVE Commutative read-write parameter, all
FILE(_IN) Read-only file parameter.
FILE INOUT Read-write file parameter.
FILE OUT Write-only file parameter.

FILE CONCURRENT

Concurrent read-write file parameter.

FILE COMMUTATIVE

Commutative read-write file parameter.

DIRECTORY(_IN)

The parameter is a read-only directory.

DIRECTORY INOUT

The parameter is a read-write directory.

DIRECTORY_ _OUT

the parameter is a write-only directory.

COLLECTION(_IN)

Read-only collection parameter (list).

COLLECTION IN_ DELETE

Single usage read-only collection parame

COLLECTION INOUT

Read-write collection parameter (list).

COLLECTION OUT

Read-only collection parameter (list).

COLLECTION FILE(_IN)

Read-only collection of files parameter (

COLLECTION FILE INOUT

Read-write collection of files parameter

COLLECTION FILE_OUT

Read-only collection of files parameter (

DICTIONARY(_IN)

Read-only dictionary parameter (dict).

DICTIONARY IN DELETE

Single usage read-only collection diction

DICTIONARY INOUT

Read-write dictionary parameter (dict).

STREAM IN The parameter is a read-only stream.
STREAM OUT The parameter is a write-only stream.
STDIN The parameter is a file for standard inp
STDOUT The parameter is a file for standard out
STDERR The parameter is a file for standard errc

84

Chapter 4.

Application development

COMPSs Documentation, 3.0

Table 8 — continued from previous page

Argument Value
Explicit: {Type:(empty=object)/FILE/COLLECTION/DICTIONARY, Direction:(empty=IN)/!
DELETE/INOUT/OUT/CONCURRENT}

returns int (for integer and boolean), long, float, str, dict, list, tuple, user-defined classes

target direction INOUT (default), IN or CONCURRENT

priority True or False (default)

is_distributed True or False (default)

is_replicated True or False (default)

on_ failure 'RETRY’ (default), 'CANCEL SUCCESSORS’, 'FAIL’ or IGNORE’

time _out int (time in seconds)

Task Return

If the function or method returns a value, the programmer can use the returns argument within the @task decorator.
In this argument, the programmer can specify the type of that value (Code 58).

Code 58: Python task returns example

Otask(returns=int)
def ret_func():
return 1

Moreover, if the function or method returns more than one value, the programmer can specify how many and their
type in the returns argument. Code 59 shows how to specify that two values (an integer and a list) are returned.

Code 59: Python task with multireturn example

Otask(returns=(int, list))
def ret_func():
return 1, [2, 3]

Alternatively, the user can specify the number of return statements as an integer value (Code 60). This way of
specifying the amount of return eases the returns definition since the user does not need to specify explicitly the
type of the return arguments. However, it must be considered that the type of the object returned when the task is
invoked will be a future object. This consideration may lead to an error if the user expects to invoke a task defined
within an object returned by a previous task. In this scenario, the solution is to specify explicitly the return type.

Code 60: Python task returns with integer example

Otask(returns=1)
def ret_func():
return "my_string"

Otask(returns=2)
def ret_func():
return 1, [2, 3]

Important: If the programmer selects as a task a function or method that returns a value, that value is not
generated until the task executes (Code 61).

Code 61: Task return value generation

Otask(return=MyClass)
def ret_func():
return MyClass(...)

(continues on next page)

4.2. Python Binding 85

COMPSs Documentation, 3.0

(continued from previous page)

if __name__=='__main__"':

o = ret_func() # o is a future object

The object returned can be involved in a subsequent task call, and the COMPSs runtime will automatically find
the corresponding data dependency. In the following example, the object o is passed as a parameter and callee of
two subsequent (asynchronous) tasks, respectively (Code 62).

Code 62: Task return value subsequent usage

if __name__=='__main__"':

0o 1s a future object
o = ret_func()

another_task(o)

o.yet_another_task()

Tip: PyCOMPSs is able to infer if the task returns something and its amount in most cases. Consequently,
the user can specify the task without returns argument. But this is discouraged since it requires code analysis,
including an overhead that can be avoided by using the returns argument.

Tip: PyCOMPSs is compatible with Python 3 type hinting. So, if type hinting is present in the code, PyCOMPSs
is able to detect the return type and use it (there is no need to use the returns):

Code 63: Python task returns with type hinting

Q@task()
def ret_func() -> str:
return "my_string"

@task()
def ret_func() -> (int, list):
return 1, [2, 3]

Other task types

In addition to this API functions, the programmer can use a set of decorators for other purposes.

Important: NOTE: If defined, these decorators must be placed after (below) the @constraint decorator, and
before (on top of) the @task decorator.

The following subparagraphs describe their usage.

86 Chapter 4. Application development

COMPSs Documentation, 3.0

Binary decorator

The @binary (or @Binary) decorator shall be used to define that a task is going to invoke a binary executable.

In this context, the @task decorator parameters will be used as the binary invocation parameters (following their
order in the function definition). Since the invocation parameters can be of different nature, information on their
type can be provided through the @task decorator.

Code 64 shows the most simple binary task definition without/with constraints (without parameters); please note
that @Qconstraint decorator has to be provided on top of the others.

Code 64: Binary task example

from pycompss.api.task import task
from pycompss.api.binary import binary

@binary(binary="mybinary.bin")
Q@task()
def binary_func():

pass

Oconstraint (computingUnits="2")
@binary(binary="otherbinary.bin")
Otask()
def binary_func2():

pass

The invocation of these tasks would be equivalent to:

$./mybinary.bin
$./otherbinary.bin # in resources that respect the constraint.

The @binary decorator supports the working_dir parameter to define the working directory for the execution of
the defined binary.

Code 65 shows a more complex binary invocation, with files as parameters:

Code 65: Binary task example 2

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

@binary(binary="grep", working_dir=".")
Otask(infile={Type:FILE_IN_STDIN}, result={Type:FILE_OUT_STDOUT})
def grepper():

pass

This task definition ts equivalent to the following, which s more verbose:
@binary(binary="grep", working dir=".")

Otask(infile={Type:FILE_IN, StdIOStream:STDIN}, result={Type:FILE_OUT, StdIOStream:STDOUT})
def grepper(keyword, infile, result):

pass
if __name__=='__main__"':
infile = "infile.txt"

outfile = "outfile.txt"
grepper ("Hi", infile, outfile)

4.2. Python Binding 87

COMPSs Documentation, 3.0

The invocation of the grepper task would be equivalent to:

$ # grep keyword < infile > result
$ grep Hi < infile.txt > outfile.txt

Please note that the keyword parameter is a string, and it is respected as is in the invocation call. Another way of
passing task parameters to binary execution command is to use ~params” parameter in the binary definition. In
this case, task parameters should be defined between curly braces and the full string with parameter replacements
will be added to the command. In the following example, value of ‘param_ 1’ is added to the execution command
after ‘-d’ arg:

Code 66: Binary task example 3

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

@binary(binary="date", params= "-d {{param_1}}")

Otask()

def print_date(param_1):
pass

if __name__=='__main__"':

print_date("next Monday")

The invocation of the print_date task would be equivalent to:

$ # date -d param_1
$ date -d "next Monday"

Thus, PyCOMPSs can also deal with prefixes for the given parameters. Code 67 performs a system call (Is) with
specific prefixes:

Code 67: Binary task example 4

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

@binary(binary="1s")
Otask(hide={Type:FILE_IN, Prefix:"--hide="}, sort={Prefix:"--sort="})
def myLs(flag, hide, sort):

pass
if __name__=='__main__"':
flag = '-1'
hideFile = "fileToHide.txt"
sort = "time"

myLs(flag, hideFile, sort)

The invocation of the myLs task would be equivalent to:

$ # ls -1 --hide=hide --sort=sort
$ 1s -1 --hide=fileToHide.txt --sort=time

This particular case is intended to show all the power of the @binary decorator in conjuntion with the @task deco-
rator. Please note that although the hide parameter is used as a prefix for the binary invocation, the file ToHide.txt
would also be transfered to the worker (if necessary) since its type is defined as FILE IN. This feature enables to
build more complex binary invocations.

88 Chapter 4. Application development

COMPSs Documentation, 3.0

In addition, the @binary decorator also supports the fail_by_exit_value parameter to define the failure of the
task by the exit value of the binary (Code 68). It accepts a boolean (True to consider the task failed if the exit
value is not 0, or False to ignore the failure by the exit value (default)), or a string to determine the environment
variable that defines the fail by exit value (as boolean). The default behaviour (fail_by_exit_value=False)
allows users to receive the exit value of the binary as the task return value, and take the necessary decissions based
on this value.

Code 68: Binary task example with fail_by_exit_value

@binary(binary="mybinary.bin", fail_by_exit_value=True)
Qtask()
def binary_func():

pass

OmpSs decorator

The @ompss (or @QOmpSs) decorator shall be used to define that a task is going to invoke a OmpSs executable
(Code 69).

Code 69: OmpSs task example

from pycompss.api.ompss import ompss

Q@ompss (binary="ompssApp.bin")
Q@task()
def ompss_func():

pass

The OmpSs executable invocation can also be enriched with parameters, files and prefixes as with the @binary
decorator through the function parameters and @task decorator information. Please, check Binary decorator for
more details.

MPI decorator

The @mpi (or @Mpi) decorator shall be used to define that a task is going to invoke a MPI executable (Code 70).

Code 70: MPI task example

from pycompss.api.mpi import mpi

Ompi (binary="mpiApp.bin", runner="mpirun", processes=2)
Qtask()
def mpi_func():

pass

The MPI executable invocation can also be enriched with parameters, files and prefixes as with the @binary
decorator through the function parameters and @task decorator information. Please, check Binary decorator for
more details.

The @mpi decorator can be also used to execute a MPI for python (mpidpy) code. To indicate it, developers only
need to remove the binary field and include the Python MPI task implementation inside the function body as
shown in the following example (Code 71).

Code 71: Python MPI task example.

from pycompss.api.mpi import mpi

(continues on next page)

4.2. Python Binding 89

COMPSs Documentation, 3.0

(continued from previous page)

@mpi (processes=4)

Otask()

def layout_test_with_all():
from mpid4py import MPI
rank = MPI.COMM_WORLD.rank
return rank

In both cases, users can also define, MPI + OpenMP tasks by using processes property to indicate the number
of MPI processes and computing_units in the Task Constraints to indicate the number of OpenMP threads per
MPI process.

Users can also limit the distribution of the MPI processes through the nodes by using the processes_per_node
property. In the following example (Code 72) the four MPI processes defined in the task will be divided in two
groups of two processes. And all the processes of each group will be allocated to the same node. It will ensure
that the defined MPI task will use up to two nodes.

Code 72: MPI task example grouping MPI processes

from pycompss.api.mpi import mpi

Ompi(processes=4, processes_per_node=2)
Qtask()
def layout_test_with_all():

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

return rank

The @mpi decorator can be combined with collections to allow the process of a list of parameters in the same
MPI execution. By the default, all parameters of the list will be deserialized to all the MPI processes. However,
a common pattern in MPI is that each MPI processes performs the computation in a subset of data. So, all data
serialization is not needed. To indicate the subset used by each MPI process, developers can use the data_layout
notation inside the MPI task declaration.

Code 73: MPI task example with collections and data layout

from pycompss.api.mpi import mpi

@mpi(processes=4, col_layout={block_count: 4, block_length: 2, stride: 1})
O@task (col=COLLECTION_IN, returns=4)
def layout_test_with_all(col):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

return data[0]+data[1]+rank

Figure (Code 73) shows an example about how to combine MPI tasks with collections and data layouts. In this
example, we have define a MPI task with an input collection (col). We have also defined a data layout with
the property <arg_name>_layout and we specify the number of blocks (block_count), the elements per block
(block_length), and the number of element between the starting block points (stride).

Users can specify the MPI runner command with the runner how ever the arguments passed to the mpirun
command differs depending on the implementation. To ensure that the correct arguments are passed to the
runner, users can define the COMPSS_MPIRUN_TYPE environment variable. The current supported values are impi
for Intel MPI and ompi for OpenMPI. Other MPI implementation can be supported by adding its corresponding
properties file in the folder $COMPSS_HOME/Runtime/configuration/mpi.

20 Chapter 4. Application development

COMPSs Documentation, 3.0

MPMD MPI decorator

The @mpmd_mpi decorator can be used to define Multiple Program Multiple Data (MPMD) MPI tasks as shown
in the following example (Code 74):

Code 74: MPMD MPI task example

from pycompss.api.mpmd_mpi import mpmd_mpi

Ompmd_mpi (runner="mpirun",
programs=[
dict(binary="hostname", processes=2),
dict(binary="date", processes=2)

D
@task()
def basic():
pass

The definition implies that MPMD MPI command will be run by ‘mpirun’, and will execute 2 processes for
‘hostname’, and 2 processes to show the ¢ date’. It’s not mandatory to specify total number of programs as long
as they are added inside programs list of dictionaries argument.

Each of the MPMD MPI programs must at least have binary, but also can have processes and params string
(Code 75):

Code 75: MPMD MPI task example

from pycompss.api.mpmd_mpi import mpmd_mpi

O@mpmd_mpi (runner="mpirun",
programs=[
dict(binary="date", processes=2, params="-d {{first}}"),
dict(binary="date", processes=4, params="-d {{second}}")

D
@task()
def params(first, second):
pass

def print_monday_friday(self):
params ("next monday", "next friday")
compss_barrier ()

When executed, this MPMD MPI program would invoke 2 MPI processes to print the date of next Monday, and 4
processes for next Friday. Params string replaces every parameter that is ‘called’ between double curly braces with
their real value. This allows using multiple FILE_IN parameters for multiple MPI programs. Moreover, output of
the full MPMD MPI programs can be forwarded to an FILE_OUT_STDOUT param:

Code 76: MPMD MPI task example

from pycompss.api.mpmd_mpi import mpmd_mpi

Ompmd_mpi (runner="mpirun",
programs=[
dict(binary="grep", params="{{keyword}} {{in_file_1}}"),
dict(binary="grep", params="{{keyword}} {{in_file_2}}"),
D
Otask(in_file=FILE_IN, result={Type: FILE_OUT_STDOUT})
def std_out(keyword, in_file_1, in_file_2, result):
pass

4.2. Python Binding 91

COMPSs Documentation, 3.0

Other parameters of @mpmd_ mpi decorator such as working_dir, fail_by_exit_value, processes_per_node,
have the same behaviors as in @myps.

I/0 decorator

The @IO decorator is used to declare a task as an I/O task. I/O tasks exclusively perform I/O (i.e., reading or
writing) and should not perform any computations.

Code 77: T/O task example

from pycompss.api.I0 import IO

@100

@task()

def io_func(text):
fh = open("dump_file", "w")
fh.write(text)
fh.close()

The execution of I/O tasks can overlap with the execution of non-IO tasks (i.e., tasks that do not use the @IO
decorator) if there are no dependencies between them. In addition to that, the scheduling of I/O tasks does not
depend on the availability of computing units. For instance, an I/O task can be still scheduled and executed on a
certain node even if all the CPUs on that node are busy executing non-I/O tasks. Hence, increasing parallelism
level.

The @IO decorator can be also used on top of the @mpi decorator (MPI decorator) to declare a task that performs
parallel I/O. Example Code 78 shows a MPI-IO task that does collective I/O with a NumPy array.

Code 78: Python MPI-10 task example.

from pycompss.api.IO0 import IO
from pycompss.api.mpi import mpi

eI00)

@mpi (processes=4)

Otask()

def mpi_io_func(text_chunks):
from mpid4py import MPI
import numpy as np

fmode = MPI.MODE_WRONLY |MPI.MODE_CREATE
fh = MPI.File.Open(MPI.COMM_WORLD, "dump_file", fmode)

buffer = np.empty(20, dtype=np.int)
buffer[:] = MPI.COMM_WORLD.Get_rank()

offset = MPI.COMM_WORLD.Get_rank() * buffer.nbytes
fh.Write_at_all(offset, buffer)

fh.Close()

92 Chapter 4. Application development

COMPSs Documentation, 3.0

COMPSs decorator

The @compss (or QCOMPSs) decorator shall be used to define that a task is going to be a COMPSs application
(Code 79). It enables to have nested PyCOMPSs/COMPSs applications.

Code 79: COMPSs task example

from pycompss.api.compss import compss

Ocompss (runcompss="${RUNCOMPSS}", flags="-d",
app_name="/path/to/simple_compss_nested.py", computing_nodes="2")
Otask()
def compss_func():
pass

The COMPSs application invocation can also be enriched with the flags accepted by the runcompss executable.
Please, check execution manual for more details about the supported flags.

Multinode decorator

The @multinode (or @Multinode) decorator shall be used to define that a task is going to use multiple nodes (e.g.
using internal parallelism) (Code 80).

Code 80: Multinode task example

from pycompss.api.multinode import multinode

@multinode (computing_nodes="2")
Qtask()
def multinode_func(Q):

pass

The only supported parameter is computing nodes, used to define the number of nodes required by the task (the
default value is 1). The mechanism to get the number of nodes, threads and their names to the task is through the
COMPSS NUM_NODES, COMPSS NUM _ THREADS and COMPSS HOSTNAMES environment variables
respectively, which are exported within the task scope by the COMPSs runtime before the task execution.

HTTP decorator

The @http decorator can be used for the tasks to be executed on a remote Web Service via HTTP requests. In
order to create HTTP tasks, it is obligatory to define HTTP resource(s) in resources and project files (see
HTTP configuration). Following code snippet (Code 81) is a basic HTTP task with all required parameters. At
the time of execution, the runtime will search for HT'TP resource from resources file which allows execution of
‘service_ 1’ and send a GET request to its ‘Base URL’. Moreover, python parameters can be added to the request
query as shown in the example (between double curly brackets).

Code 81: HTTP Task example.

from pycompss.api.task import task
from pycompss.api.http import http

@http(service_name="service_1", request="GET",
resource="get_length/{{message}}")
Otask(returns=int)
def an_example(message):
pass

4.2. Python Binding 93

COMPSs Documentation, 3.0

For POST requests it is possible to send a parameter as the request body by adding it to the payload arg. In this
case, payload type can also be specified (‘application/json’ by default). If the parameter is a FILE type, then the
content of the file is read in the master and added to the request as request body.

Code 82: HTTP Task with POST request.

from pycompss.api.task import task
from pycompss.api.http import http

@http(service_name="service_1", request="POST", resource="post_json/",
payload="{{payload}}", payload_type="application/json")
Otask(returns=str)
def post_with_param(payload):
pass

For the cases where the response body is a JSON formatted string, PyCOMPSs’ HTTP decorator allows response
string formatting by defining the return values within the produces parameter. In the following example, the
return value of the task would be extracted from ‘length’ key of the JSON response string:

Code 83: HTTP Task with return value to be extracted from a
JSON string.

from pycompss.api.task import task
from pycompss.api.http import http

@http(service_name="service_1", request="GET",
resource="produce_format/{{message}}",
produces="{'length':'{{return_0}}'}")

Otask(returns=int)

def an_example (message):

pass

Note that if the task has multiple returns, ‘return_0’, ‘return_1’, return_2, etc. all must be defined in the
produces string.

It is also possible to take advantages of INOUT python dicts within HT'TP tasks. In this case, updates string can
be used to update the INOUT dict:

Code 84: HTTP Task with return value to be extracted from a
JSON string.

@http(service_name="service_1", request="GET",
resource="produce_format/test",
produces="{'length':'{{return_0}}', 'child_json':{'depth_1':'one', 'message':'{{param}}
'},
updates='{{event}}.some_key = {{param}}')
Otask(event=INOUT)
def http_updates(event):

nnn

nnn

pass

In the example above, ‘some key’ key of the INOUT dict param will be updated according to the response. Please
note that the {{param}} is defined inside produces. In other words, parameters that are defined inside produces
string can be used in updates to update INOUT dicts.

Important: Disclaimer: Due to serialization limitations, with the current implementation, outputs of regular
PyCOMPSs tasks cannot be passed as input parameters to http tasks.

94 Chapter 4. Application development

COMPSs Documentation, 3.0

Disclaimer: COLLECTION * and DICTIONARY * type of parameters are not supported within HTTP tasks.
However, Python lists and dictionary objects can be used.

Reduction decorator

The @reduction (or @Reduction) decorator shall be used to define that a task is going to be subdivided into smaller
tasks that take as input a subset of the input data (one COLLECTION).

The only supported parameter is chunk _size, used to define the size of the data that the generated tasks will get
as input parameter. The data given as input to the main reduction task is subdivided into chunks of the set size.

Code 85 shows how to declare a reduction task. In detail, this application calls 10 times to calculate_area and
appends the results into areas list. Then, invokes the sum_reduction task (that is declared as a reduction task)
with the areas list and has chunk_size=2. Although it is invoked once, the COMPSs runtime splits the input
data (areas) into chunks of 2 elements, and applies the sum_reduction function to them until the final result is
achieved. Then, the compss_wait_on retrieves the final result and it is printed.

Code 85: Reduction task example

from pycompss.api.reduction import reduction
from pycompss.api.task import task

from pycompss.api.parameter import COLLECTION_IN
from pycompss.api.api import compss_wait_on

Otask(returns=int)
def calculate_area(height, width):
return height * width

@reduction(chunk_size="2")
Otask(returns=int, areas=COLLECTION_IN)
def sum_reduction(areas):
total_area = 0
for area in areas:
total_area += area
return total_area

def main(Q):
areas = []
for i in range(10):
areas.append(calculate_area(i, 1))
result = sum_reduction(areas)
result = compss_wait_on(result)
print ("Result: %d" 7 result)

if __name__ == "__main__":
main()
Caution: The task decorated with @reduction can have multiple parameters, but ONLY ONE

COLLECTION_IN parameter, which will be splitted into chunks to perform the reduction.

4.2. Python Binding 95

COMPSs Documentation, 3.0

Container decorator

The @container (or @Container) decorator shall be used to define that a task is going to be executed within a
container (Code 86).

Code 86: Container task example

from pycompss.api.compss import container
from pycompss.api.task import task

from pycompss.api.parameter import *

from pycompss.api.api import compss_wait_on

Qcontainer (engine="DOCKER",
image="compss/compss")

Otask(returns=1, num=IN, in_str=IN, fin=FILE_IN)
def container_fun(num, in_str, fin):

Sample task body:

with open(fin, "r") as fd:

num_lines = len(fd.readlines())
str_len = len(in_str)
result = num * str_len * num_lines

You can import and use libraries available in the container
return result

if __name__=='__main__":
result = container_fun(5, "hello", "dataset.txt")
result = compss_wait_on(result)

print("result: %s" 7 result)

The container fun task will be executed within the container defined in the @container decorator using the docker
engine with the compss/compss image. This task is pure python and you can import and use any library available
in the container

This feature allows to use specific containers for tasks where the library dependencies are met.

Tip: Singularity is also supported, and can be selected by setting the engine to SINGULARITY:

Qcontainer (engine=SINGULARITY)

In addition, the @container decorator can be placed on top of the @binary, @ompss or @mpi decorators. Code 87
shows how to execute the same example described in the Binary decorator section, but within the compss/compss
container using docker. This will execute the binary/ompss/mpi binary within the container.

Code 87: Container binary task example

from pycompss.api.compss import container
from pycompss.api.task import task

from pycompss.api.binary import binary
from pycompss.api.parameter import *

Qcontainer (engine="DOCKER",

image="compss/compss")
@binary(binary="grep", working dir=".")
Otask(infile={Type:FILE_IN_STDIN}, result={Type:FILE_OUT_STDOUT})
def grepper():

(continues on next page)

96 Chapter 4. Application development

COMPSs Documentation, 3.0

(continued from previous page)

pass

if __name__=='__main__"':
infile = "infile.txt"
outfile = "outfile.txt"

grepper("Hi", infile, outfile)

Software decorator

The @software decorator is useful in order to move definitions of several PyCOMPSs decorators to a JSON file.
It allows the users to ‘define’ their decorator definitions from an external file, which can be generated by another
resource. Thus, the only supported argument is the ‘config file’ that should contain the path to the JSON
configuration file. Following example shows a basic usage of the @software decorator:

Code 88: Software decorator definition example.

from pycompss.api.task import task
from pycompss.api.software import software

Osoftware(config_file="example.json")
Otask(returns=1)
def example():

return "hola"

Configuration files can contain different key-values depending on the user’s needs. If the user wants to define an
MPIT task, then “mpi” value should be set for the “type” key. Moreover, arguments of @mpi decorator can be added
inside the “properties”. A basic configuration file for an MPI task would look like in the example below:

Code 89: JSON configuration file of an MPI definition.

{

"type":"mpi",

"properties":{
"runner":"mpirun",
"processes": 2,
"binary":"~/app_mpi.bin"

}

}

97 Ll

As we see “runner”, “processes”, and “binary” are the regular parameters of @mpi decorator, and are added to the
“properties” of the @software.

If we wanted to combine @constraint and @mpi decorators together, the JSON file would have been extended:

Code 90: JSON configuration file of an MPI definition.

"type":"mpi",
"properties":{
"runner":"mpirun",
"processes": 2,
"binary":"~/app_mpi.bin",
"params": "-d {{a}} {{b}}"
1,
"constraints":{
"computing_units": 2

(continues on next page)

4.2. Python Binding 97

COMPSs Documentation, 3.0

(continued from previous page)

It’s also possible to add @prolog and @epilog definitions in the configuration files:

Code 91: Prolog and Epilog definitions in configuration files.

{

"type":"mpi",

"properties":{
"runner":"mpirun",
"processes": 2,
"binary":"app_mpi.bin",

"params": "-d {{a}} {{b}}"

1},

"constraints":{
"computing_units": 2

3,

"prolog":{
"binary":"echo",
"params":"greetings from prolog."

1,

"epilog":{
"binary":"echo",
"params":"execution finished."

1},

}

Next table provides more detailed information about JSON configuration files:

Key Description

type (Mandatory) Type of the software invocation. Supported values are ‘mpi’, ‘bi-
nary’, ‘mpmd_mpi’, ‘multinode’, ‘http’, and ‘compss’.

prop- (Mandatory) A dictionary containing parameters of the “type” decorator.

erties

prolog | Replaces the @prolog definition and expects @prolog parameters in a dictionary.
epilog | Replaces the @Qepilog definition and expects @epilog parameters in a dictionary.

con- Replaces the @constraint definition and expects @Qconstraint parameters in a
straints| dictionary.
con- Replaces the @container definition and expects Qcontainer parameters in a

tainer | dictionary.

Please check Other task types summary for the full list of the parameters for each decorator.

Other task types summary

Next tables summarizes the parameters of these decorators. Please note that ‘working dir’ and ‘params’ ae the
only decorator properties that can contain task parameters defined in curly braces.

e Binary decorator (Qbinary)

98 Chapter 4. Application development

COMPSs Documentation, 3.0

Parame- Description

ter

binary (Mandatory) String defining the full path of the binary that must be executed.

work- Full path of the binary working directory inside the COMPSs Worker.

ing dir

params | Params string to be added to end of the execution command of the binary. It can contain
python task parameters defined in curly braces.

e OmpSs decorator (Qompss)

Parameter
binary
working dir

Description
(Mandatory) String defining the full path of the binary that must be executed.
Full path of the binary working directory inside the COMPSs Worker.

e MPI decorator (Qmpi)

Parameter Description

binary String defining the full path of the binary that must be executed. Empty indicates
python MPI code.

working - Full path of the binary working directory inside the COMPSs Worker.

dir

runner (Mandatory) String defining the MPI runner command.

processes Integer defining the number of MPI processes spawned by the task. (Default 1)

processes - | Integer defining the number of co-allocated MPI processses per node. The

per node processes value should be multiple of this value

params Params string to be added to end of the execution command of the binary. It can
contain python task parameters defined in curly braces.

e MPMD MPI decorator (@mpmd _mpi)

Parameter Description

runner (Mandatory) String defining the MPMD MPI runner command.

working dir Defines mpi job’s working directory.

processes - Integer defining the number of co-allocated MPI processses per node. The

per node processes value should be multiple of this value

fail by - If set to ‘False’, and returns value of the ‘task’ definition is ‘int’, exit code of the

exit value MPI command will be returned.

programs List of single MPI program dictionaries where program specific parameters
(binary, processes, params) are defined.

e 1/0 decorator (Qio)
e COMPSs decorator (Q@compss)

Parameter Description

runcompss (Mandatory) String defining the full path of the runcompss binary that must be
executed.

flags String defining the flags needed for the runcompss execution.

app _name (Mandatory) String defining the application that must be executed.

comput- Integer defining the number of computing nodes reserved for the COMPSs execution

ing nodes (only a single node is reserved by default).

e Multinode decorator (@multinode)

Parameter

Description

comput-
ing nodes

Integer defining the number of computing nodes reserved for the task execution
(only a single node is reserved by default).

e HTTP decorator (Qhttp)

4.2. Python Binding

99

COMPSs Documentation, 3.0

Parameter Description

service - | (Mandatory) Name of the HT'TP Service that included at least one HT'TP resource in
name the resources file.

resource (Mandatory) URL extension to be concatenated with HTTP resource’s base URL.

request (Mandatory) Type of the HTTP request (GET, POST, etc.).

produces | In case of JSON responses, produces string defines where the return value(s) is (are)
stored in the retrieved JSON string.

payload Payload string of POST requests if any.

pay- Payload type of POST requests (e.g: ‘application/json’).

load -
type
updates To define INOUT parameter key to be updated with a value from HTTP response.

e Reduction decorator (@Qreduction)

Parameter Description
chunk size | Size of data fragments to be given as input parameter to the reduction function.

e Container decorator (Qcontainer)

Parameter | Description
engine Container engine to use (e.g. DOCKER or SINGULARITY).
image Container image to be deployed and used for the task execution.

o Software decorator (@software)

Parameter Description
config file | Path to the JSON configuration file.

In addition to the parameters that can be used within the @task decorator, Table 9 summarizes the StdIOStream
parameter that can be used within the @task decorator for the function parameters when using the @binary,
@ompss and @mpi decorators. In particular, the StdIOStream parameter is used to indicate that a parameter is
going to be considered as a FILE but as a stream (e.g. >, < and 2 > in bash) for the @binary, @ompss and @mpi
calls.

Table 9: Supported StdIOStreams for the @binary, @Qompss and
@mpi decorators

Parameter Description
(default: empty) | Not a stream.
STDIN Standard input.
STDOUT Standard output.
STDERR Standard error.

Moreover, there are some shorcuts that can be used for files type definition as parameters within the @task
decorator (Table 10). It is not necessary to indicate the Direction nor the StdIOStream since it may be already be
indicated with the shorcut.

100 Chapter 4. Application development

COMPSs Documentation, 3.0

Table 10: File parameters definition shortcuts

Alias Description

COLLECTION(_ IN) Type: COLLECTION, Direction: IN

COLLECTION IN DELETE Type: COLLECTION, Direction: IN_DELETE
COLLECTION INOUT Type: COLLECTION, Direction: INOUT

COLLECTION OUT Type: COLLECTION, Direction: OUT

DICTIONARY(_IN) Type: DICTIONARY, Direction: IN

DICTIONARY IN DELETE Type: DICTIONARY, Direction: IN_DELETE
DICTIONARY INOUT Type: DICTIONARY, Direction: INOUT

COLLECTION FILE(IN) Type: COLLECTION (File), Direction: IN

COLLECTION FILE INOUT Type: COLLECTION (File), Direction: INOUT
COLLECTION_ FILE OUT Type: COLLECTION (File), Direction: OUT

FILE(_ IN) STDIN Type: File, Direction: IN, StdIOStream: STDIN

FILE(IN) STDOUT Type: File, Direction: IN, StdIOStream: STDOUT

FILE(_IN) STDERR Type: File, Direction: IN, StdIOStream: STDERR

FILE OUT_STDIN Type: File, Direction: OUT, StdIOStream: STDIN

FILE OUT_ STDOUT Type: File, Direction: OUT, StdIOStream: STDOUT

FILE OUT_ STDERR Type: File, Direction: OUT, StdIOStream: STDERR

FILE INOUT STDIN Type: File, Direction: INOUT, StdIOStream: STDIN

FILE INOUT STDOUT Type: File, Direction: INOUT, StdIOStream: STDOUT

FILE INOUT STDERR Type: File, Direction: INOUT, StdIOStream: STDERR

FILE CONCURRENT Type: File, Direction: CONCURRENT

FILE CONCURRENT STDIN Type: File, Direction: CONCURRENT, StdIOStream: STDIN
FILE CONCURRENT STDOUT | Type: File, Direction: CONCURRENT, StdIOStream: STDOUT
FILE CONCURRENT STDERR | Type: File, Direction: CONCURRENT, StdIOStream: STDERR
FILE COMMUTATIVE Type: File, Direction: COMMUTATIVE

FILE COMMUTATIVE STDIN Type: File, Direction: COMMUTATIVE, StdIOStream: STDIN
FILE COMMUTATIVE STD- Type: File, Direction: COMMUTATIVE, StdIOStream: STDOUT
ourT

FILE COMMUTATIVE - Type: File, Direction: COMMUTATIVE, StdlOStream: STDERR
STDERR

These parameter keys, as well as the shortcuts, can be imported from the PyCOMPSs library:

from pycompss.api.parameter import *

Task Constraints

It is possible to define constraints for each task. To this end, the @constraint (or @QConstraint) decorator followed
by the desired constraints needs to be placed ON TOP of the @Qtask decorator (Code 92).

Important: Please note the the order of @constraint and @task decorators is important.

Code 92: Constrained task example

from pycompss.api.task import task
from pycompss.api.constraint import constraint
from pycompss.api.parameter import INOUT

Qconstraint (computing_units="4")
Otask (c=INQUT)
def func(a, b, ¢):

(continues on next page)

4.2. Python Binding 101

COMPSs Documentation, 3.0

(continued from previous page)

c+t=a*b

This decorator enables the user to set the particular constraints for each task, such as the amount of Cores required
explicitly. Alternatively, it is also possible to indicate that the value of a constraint is specified in a environment
variable (Code 93). A full description of the supported constraints can be found in Table 14.

For example:

Code 93: Constrained task with environment variable example

from pycompss.api.task import task
from pycompss.api.constraint import constraint
from pycompss.api.parameter import INOUT

Oconstraint (computing_units="4",
app_software="numpy,scipy,gnuplot",
memory_size="$MIN_MEM_REQ")

Otask (c=INOUT)

def func(a, b, c):

c+=ax*b

Or another example requesting a CPU core and a GPU (Code 94).

Code 94: CPU and GPU constrained task example

from pycompss.api.task import task
from pycompss.api.constraint import constraint

Qconstraint (processors=[{'processorType':'CPU', 'computingUnits':'1'},
{'processorType':'GPU', 'computingUnits':'1'}])

Otask(returns=1)

def func(a, b, c):

return result

When the task requests a GPU, COMPSs provides the information about the assigned GPU through the
COMPSS BINDED GPUS, CUDA_VISIBLE DEVICES and GPU_DEVICE ORDINAL environment vari-
ables. This information can be gathered from the task code in order to use the GPU.

Please, take into account that in order to respect the constraints, the peculiarities of the infrastructure must be
defined in the resources.zml file.

Multiple Task Implementations

As in Java COMPSs applications, it is possible to define multiple implementations for each task. In particular, a
programmer can define a task for a particular purpose, and multiple implementations for that task with the same
objective, but with different constraints (e.g. specific libraries, hardware, etc). To this end, the @implement (or
@Implement) decorator followed with the specific implementations constraints (with the @constraint decorator, see
Section [subsubsec:constraints|) needs to be placed ON TOP of the @task decorator. Although the user only calls
the task that is not decorated with the @implement decorator, when the application is executed in a heterogeneous
distributed environment, the runtime will take into account the constraints on each implementation and will try
to invoke the implementation that fulfills the constraints within each resource, keeping this management invisible
to the user (Code 95).

102 Chapter 4. Application development

COMPSs Documentation, 3.0

Code 95: Multiple task implementations example

from pycompss.api.implement import implement

@implement (source_class="sourcemodule", method="main_func")
Qconstraint (app_software="numpy")
Otask(returns=1list)
def myfunctionWithNumpy(listl, list2):
Operate with the lists using numpy
return resultlList

O@task(returns=1list)

def main_func(listl, list2):
Operate with the lists using built-int functions
return resultlist

Please, note that if the implementation is used to define a binary, OmpSs, MPI, COMPSs, multinode or reduction
task invocation (see Other task types), the @implement decorator must be always on top of the decorators stack,
followed by the Q@constraint decorator, then the @binary/@ompss/@mpi/@compss/@multinode decorator, and
finally, the @task decorator in the lowest level.

Prolog & Epilog

The @prolog and @epilog decorators are definitions of binaries to be executed before / after ~task™ execution on
the worker. All kind of PyCOMPSs tasks can have a @prolog or an @epilog, or both at the same time. A basic
usage is shown in the example below:

Important: Please note that @prolog and @epilog definitions should be on top of @task decorators.

Code 96: Prolog and Epilog definitions.

from pycompss.api.epilog import epilog
from pycompss.api.prolog import prolog
from pycompss.api.task import task

@prolog(binary="start_some_service.bin")
Otask()
def basic():

return 1
Q@epilog(binary="shut_down.bin")

@task()
def basic():

return 1

Both decorators have the same syntax and have 3 parameters: ~binary" is the only mandatory parameter where
“params” and “fail_by_exit_value” are optional. ~params” describe the command line arguments of the binary.
Users can also pass the task parameters as arguments. In this case, the task parameter should be surrounded by
double curly braces (“{{” and “}}”) in the ‘params’ string. These parameters can be results of previous tasks and
PyCOMPSs will handle data dependencies between tasks:

Important: Task parameters used in ‘params’ strings can be type of primitive types such as int, float, string,

4.2. Python Binding 103

COMPSs Documentation, 3.0

and boolean.

Code 97: Task parameter in Prolog definition.

from pycompss.api.prolog import prolog
from pycompss.api.task import task

@prolog(binary="mkdir", params="{{param_1}}")
Qtask()
def task_1(param_1):

return 1
call to the task function
task_1("/home/dir_to_be_created_before_task_exec")

“fail_by_exit_value” is used to indicate the behaviour when the prolog or epilog returns an exit value different
than zero. Users can set the “fail_by_exit_value™ to True, if they want to consider the exit value as a task
failure. If set to False, failure of the prolog will be ignored and task execution will start as usual. The same rule
applies for the “epilog™ as well. Default value of ‘fail by exit value’ is True for Prolog and False for Epilog:

Code 98: Prolog & Epilog with ‘fail by exit value’.

from pycompss.api.epilog import epilog
from pycompss.api.prolog import prolog
from pycompss.api.task import task

Oprolog(binary="mkdir", params="-p {{sandbox_path}}", fail_by_exit_value=True)
@epilog(binary="rm", params="-r {{sandbox_path}}", fail_by_exit_value=False)
Qtask()

def task_2(sandbox_path):

return 1
call to the task function
task_2("/tmp/my_task_sandbox")

In the example above, if creation of the ‘sandbox path’ fails, the task execution won’t start at all and task will be
considered as failed. However, if removing the sandbox is not crucial and can be ignored, “fail_by_exit_value’
in the Epilog can be set to False.

4.2.1.2 API

PyCOMPSs provides an API for data synchronization and other functionalities, such as task group definition and
automatic function parameter synchronization (local decorator).

104 Chapter 4. Application development

COMPSs Documentation, 3.0

Synchronization

The main program of the application is a sequential code that contains calls to the selected tasks. In addition,
when synchronizing for task data from the main program, there exist six API functions that can be invoked:

compss_open(file _name, mode="r’) Similar to the Python open() call. It synchronizes for the last version
of file file_name and returns the file descriptor for that synchronized file. It can have an optional parameter
mode, which defaults to ’r’, containing the mode in which the file will be opened (the open modes are
analogous to those of Python open()).

compss _wait on_file(*file name) Synchronizes for the last version of the file/s specified by file_name.
Returns True if success (False otherwise).

compss_wait on_ directory(*directory name) Synchronizes for the last version of the directory/ies spec-
ified by directory name. Returns True if success (False otherwise).

compss_barrier(no_more tasks=False) Performs a explicit synchronization, but does not return any ob-
ject. The use of compss barmer(') forces to wait for all tasks that have been submitted before the compss_ bar-
rier() is called. When all tasks submitted before the compss_barrier() have finished, the execution continues.
The no_more_ tasks is used to specify if no more tasks are going to be submitted after the compss_ barrier().

compss_barrier group(group name) Performs a explicit synchronization over the tasks that belong to the
group group name, but does not return any object. The use of compss_barrier group() forces to wait for
all tasks that belong to the given group submitted before the compss barrier group() is called. When all
group tasks submitted before the compss_barrier_group() have finished, the execution continues. See Task
Groups for more information about task groups.

compss__wait _on(*obj, mode="r" | “rw”) Synchronizes for the last version of object/s specifed by obj and
returns the synchronized object. It can have an optional string parameter mode, which defaults to rw, that
indicates whether the main program will modify the returned object. It is possible to wait on a list of objects.
In this particular case, it will synchronize all future objects contained in the list recursively.

To illustrate the use of the aforementioned API functions, the following example (Code 99) first invokes a task
func that writes a file, which is later synchronized by calling compss _open(). Later in the program, an object of
class MyClass is created and a task method method that modifies the object is invoked on it; the object is then
synchronized with compss_wait _on, so that it can be used in the main program from that point on.

Then, a loop calls again ten times to func task. Afterwards, the compss_barrier() call performs a synchronization,
and the execution of the main user code will not continue until the ten func tasks have finished. This call does
not retrieve any information.

Code 99: PyCOMPSs Synchronization API functions usage

from pycompss.api.api import compss_open

from pycompss.api.api import compss_wait_on

from pycompss.api.api import compss_wait_on_file

from pycompss.api.api import compss_wait_on_directory
from pycompss.api.api import compss_barrier

if __name__=='__main__"':
my_file = 'file.txt'
func(my_file)

fd = compss_open(my_file)

my_file2 = 'file2.txt'
func(my_file2)
compss_wait_on_file(my_file2)

my_directory = '/tmp/data’
func_dir(my_directory)
compss_wait_on_directory(my_directory)

(continues on next page)

4.2. Python Binding 105

COMPSs Documentation, 3.0

(continued from previous page)

my_obj2 = MyClass()
my_obj2.method ()
my_obj2 = compss_wait_on(my_obj2)

for i in range(10):
func(str(i) + my_file)
compss_barrier()

The corresponding task definition for the example above would be (Code 100):

Code 100: PyCOMPSs Synchronization API usage tasks

Otask (f=FILE_OUT)
def func(f):

class MyClass(object):

Qtask()
def method(self):
self is modified here

Tip: It is possible to synchronize a list of objects. This is particularly useful when the programmer expect to
synchronize more than one elements (using the compss wait_on function) (Code 101). This feature also works
with dictionaries, where the value of each entry is synchronized. In addition, if the structure synchronized is a
combination of lists and dictionaries, the compss _wait_on will look for all objects to be synchronized in the whole
structure.

Code 101: Synchronization of a list of objects

if __name__=='__main__"':

1 is a list of objects where some/all of them may be future objects
1=1
for i in range(10):

1.append(ret_func())

1 = compss_wait_on(l)

Important: In order to make the COMPSs Python binding function correctly, the programmer
should not use relative imports in the code. Relative imports can lead to ambiguous code
and they are discouraged in Python, as explained in: http://docs.python.org/2/faq/programming.html#
what-are-the-best-practices-for-using-import-in-a-module

106 Chapter 4. Application development

http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module
http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module

COMPSs Documentation, 3.0

Local Decorator

Besides the synchronization API functions, the programmer has also a decorator for automatic function parameters
synchronization at his disposal. The @local decorator can be placed over functions that are not decorated as tasks,
but that may receive results from tasks (Code 102). In this case, the @local decorator synchronizes the necessary
parameters in order to continue with the function execution without the need of using explicitly the compss -
wait_on call for each parameter.

Code 102: @local decorator example

from pycompss.api.task import task

from pycompss.api.api import compss_wait_on
from pycompss.api.parameter import INOUT
from pycompss.api.local import local

Otask(returns=1list)

Otask (v=INOUT)

def append_three_ones(v):
v += [1, 1, 1]

@local

def scale_vector(v, k):
return [k*x for x in v]

if __name__=='__main__"':

v = [1,2,3]

append_three_ones (v)

v 1s automatically synchronized when calling the scale_vector function.

w = scale_vector(v, 2)

File/Object deletion

PyCOMPSs also provides two functions within its API for object/file deletion. These calls allow the runtime to
clean the infrastructure explicitly, but the deletion of the objects/files will be performed as soon as the objects/files
dependencies are released.

compss__delete file(*file _name) Notifies the runtime to delete a file/s.
compss__delete object(*object) Notifies the runtime to delete all the associated files to a given object/s.

The following example (Code 103) illustrates the use of the aforementioned API functions.

Code 103: PyCOMPSs delete API functions usage

from pycompss.api.api import compss_delete_file
from pycompss.api.api import compss_delete_object
if __name__=='__main__"':
my_file = 'file.txt'
func(my_file)
compss_delete_file(my_file)

my_obj = MyClass()
my_obj.method ()
compss_delete_object (my_obj)

The corresponding task definition for the example above would be (Code 104):

4.2. Python Binding 107

COMPSs Documentation, 3.0

Code 104: PyCOMPSs delete API usage tasks

Otask (f=FILE_QOUT)
def func(f):

class MyClass(object):

@task()
def method(self):
self 1s modified here

Task Groups

COMPSs also enables to specify task groups. To this end, COMPSs provides the TaskGroup context (Code 105)
which can be tuned with the group name, and a second parameter (boolean) to perform an implicit barrier for the
whole group. Users can also define task groups within task groups.

TaskGroup(group name, implicit barrier=True) Python context to define a group of tasks. All tasks
submitted within the context will belong to group name context and are sensitive to wait for them while the
rest are being executed. Tasks groups are depicted within a box into the generated task dependency graph.

Code 105: PyCOMPSs Task group definiton

from pycompss.api.task import task
from pycompss.api.api import TaskGroup
from pycompss.api.api import compss_barrier_group

Otask()
def func1():

Otask()
def func2():

def test_taskgroup():
Creation of group
with TaskGroup('Groupl', False):
for i in range(NUM_TASKS):
func1()
func2()

compss_barrier_group('Groupl')

if __name__=='__main__"':

test_taskgroup ()

108 Chapter 4. Application development

COMPSs Documentation, 3.0

Other

PyCOMPSs also provides other function within its API to check if a file exists.

compss_file exists(*file_name) Checks if a file or files exist. If it does not exist, the function checks if the
file has been accessed before by calling the runtime.

Code 106 illustrates its usage.

Code 106: PyCOMPSs API file exists usage

from pycompss.api.api import compss_file_exists
if __name__=='__main__':

my_file = 'file.txt'
func(my_file)

if compss_file_exists(my_file):

print ("Exists")

else:

print ("Not exists")

The corresponding task definition for the example above would be (Code 107):

Code 107: PyCOMPSs delete API usage tasks

O@task (£=FILE_QUT)

def func(f):

API Summary

Finally, Table 11 summarizes the API functions to be used in the main program of a COMPSs Python application.

Table 11: COMPSs Python API functions

Type API Function Description
Synchroniza- compss_open(file name, Synchronizes for the last version of a file and returns its
tion mode="r") file descriptor.
compss _wait_on_file(*file_- Synchronizes for the last version of the specified file/s.
name)
compss_wait on_direc- Synchronizes for the last version of the specified direc-
tory(*directory name) tory /ies.
compss barrier(no _more - Wait for all tasks submitted before the barrier.
tasks=False)
compss_barrier group(group - Wait for all tasks that belong to group name group sub-
name) mitted before the barrier.
compss_wait__on(*obj, mode="r" | Synchronizes for the last version of an object (or a list of
“rw”) objects) and returns it.
File/Object compss_delete file(*file_name) Notifies the runtime to remove the given file/s.
deletion compss__delete _object(*object) Notifies the runtime to delete the associated file to the
object/s.
Task Groups TaskGroup(group name, im- | Context to define a group of tasks. implicit_ barrier forces
plicit_barrier=True) waiting on context exit.
Other compss_file exists(*file _name) Check if a file or files exist.

4.2. Python Binding

109

COMPSs Documentation, 3.0

4.2.1.3 Failures and Exceptions

COMPSs is able to deal with failures and exceptions raised during the execution of the applications. In this case,
if a user/python defined exception happens, the user can choose the task behaviour using the on_ failure argument
within the @task decorator.

The possible values are:

‘RETRY’ (Default): The task is executed twice in the same worker and a different worker.
’CANCEL_SUCCESSORS?: All successors of this task are canceled.

*FAIL’: The task failure produces a failure of the whole application.

’IGNORE’: The task failure is ignored and the output parameters are set with empty values.

A part from failures, COMPSs can also manage blocked tasks executions. Users can use the time_out property in
the task definition to indicate the maximum duration of a task. If the task execution takes more seconds than the
specified in the property. The task will be considered failed. This property can be combined with the on_ failure
mechanism.

Code 108: Task failures example

from pycompss.api.task import task

Otask(time_out=60, on_failure='IGNORE')
def foo(v):

Tip: The on_failure behaviour can also be defined with the @on_failure decorator placed over the @task
decorator, which provides more options. For example:

Code 109: Task failures example with Qon_failure decorator

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure
from pycompss.api.parameter import INOUT

from myclass import generate_empty # private function that generates empty object
Qon_failure(management='IGNORE', returns=0, w=generate_empty())

Otask(time_out=60, w=INOUT, returns=int)
def foo(v, w):

This example depicts a task named foo that has two parameters (v (IN) and w (INOUT)) and has a timeout of
60 seconds. If the timeout is reached or an exception is thrown, the task will be considered as failed, and the
management action defined in the @on_failure decorator applied, which in this example is to ignore the failure
and continue. However, when continuing with the execution, the foo task should have produced a return element
and modifies the w parameter. Consequently, the return and w values when the task fails are defined in the @on_-
failure decorator. The return value will be 0 when the task fails, and w will contain the object produced by
generate_empty function.

COMPSs provides an special exception (COMPSsException) that the user can raise when necessary and can be
catched in the main code for user defined behaviour management. Code 110 shows an example of COMPSsEzception
raising. In this case, the group definition is blocking, and waits for all task groups to finish. If a task of the group
raises a COMPSsEzception it will be captured by the runtime. It will react to it by canceling the running and
pending tasks of the group and raising the COMPSsException to enable the execution except clause. Consequenty,
the COMPSsFEzception must be combined with task groups.

In addition, the tasks which belong to the group will be affected by the on_ failure value defined in the @task
decorator.

110 Chapter 4. Application development

COMPSs Documentation, 3.0

Code 110: COMPSs Exception with task group example

from pycompss.api.task import task
from pycompss.api.exceptions import COMPSsException
from pycompss.api.api import TaskGroup

Otask()
def foo(v):

if v ==
raise COMPSsException("8 found!")

if __name__=='__main__':
try:
with TaskGroup('exceptionGroupl'):
for i in range(10):
foo(i)

except COMPSsException:

React to the exzception (maybe calling other tasks or with other parameters)

It is possible to use a non-blocking task group for asynchronous behaviour (see Code 111). In this case, the try-
except can be defined later in the code surrounding the compss_barrier_group, enabling to check exception from
the defined groups without retrieving data while other tasks are being executed.

Code 111: Asynchronous COMPSs Exception with task group ex-

ample

from pycompss.api.task import task
from pycompss.api.api import TaskGroup
from pycompss.api.api import compss_barrier_group

Otask()
def fool():

@task()
def foo2():

def test_taskgroup():
Creation of group
for i in range(10):
with TaskGroup('Group' + str(i), False):
for i in range(NUM_TASKS):
fool()
foo2()

for i in range(10):
try:
compss_barrier_group('Group' + str(i))
except COMPSsException:

React to the exception (maybe calling other tasks or with other parameters)

if __name__=='__main__"':

(continues on next page)

4.2. Python Binding

111

COMPSs Documentation, 3.0

(continued from previous page)

test_taskgroup ()

Important: To ensure the COMPSs Exception is catched, they must be always combined with TaskGroups.

4.2.1.4 Integration with Numba

PyCOMPSs can also be used with Numba. Numba (http://numba.pydata.org/) is an Open Source JIT compiler for
Python which provides a set of decorators and functionalities to translate Python functions to optimized machine
code.

Basic usage

PyCOMPSs’ tasks can be decorated with Numba’s @jit/@njit decorator (with the appropiate parameters) just
below the @task decorator in order to apply Numba to the task.

from pycompss.api.task import task # Import @task decorator
from numba import jit

Otask(returns=1)
@jit O
def numba_func(a, b):

The task will be optimized by Numba within the worker node, enabling COMPSs to use the most efficient imple-
mentation of the task (and exploiting the compilation cache — any task that has already been compiled does not
need to be recompiled in subsequent invocations).

Advanced usage

PyCOMPSs can be also used in conjuntion with the Numba’s @vectorize, @guvectorize, @stencil and @cfunc.
But since these decorators do not preserve the original argument specification of the original function, their usage
is done through the numba parameter withih the @task decorator. The numba parameter accepts:

e Boolean: True: Applies jit to the function.
e Dictionary{k, v}: Applies jit with the dictionary parameters to the function (allows to specify specific jit
parameters (e.g. nopython=True)).
e String:
— "jit": Applies jit to the function.
— "njit": Applies jit with nopython=True to the function.
— "generated_jit": Applies generated jit to the function.
— "vectorize": Applies vectorize to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the vectorize signature.
— "guvectorize": Applies guvectorize to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the guvectorize signature.
x numba_ declaration: String with the guvectorize declaration.
— "stencil": Applies stencil to the function.
— "cfunc": Applies cfunc to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the cfunc signature.

Moreover, the @task decorator also allows to define specific flags for the jit, njit, generated _jit, vectorize, guvectorize
and cfunc functionalities with the numba_ flags hint. This hint is used to declare a dictionary with the flags expected
to use with these numba functionalities. The default flag included by PyCOMPSs is the cache=True in order to
exploit the function caching of Numba across tasks.

112 Chapter 4. Application development

http://numba.pydata.org/

COMPSs Documentation, 3.0

For example, to apply Numba jit to a task:

from pycompss.api.task import task

Otask(numba='jit') # Aternatively: @task(numba=True)
def jit_func(a, b):

And if the developer wants to use specific flags with jit (e.g. parallel=True), the numba_ flags must be defined
with a dictionary where the key is the numba flag name, and the value, the numba flag value to use):

from pycompss.api.task import task

Otask(numba='jit', numba_flags={'parallel':True})
def jit_func(a, b):

Other Numba’s functionalities require the specification of the function signature and declaration. In the next
example a task that will use the vectorize with three parameters and a specific flag to target the CPU is shown:

from pycompss.api.task import task

Otask(returns=1,
numba='vectorize',
numba_signature=['float32(float32, float32, float32)'],
numba_flags={"'target':'cpu'l})
def vectorize_task(a, b, c):
return a * b * ¢

Using Numba with GPUs

In addition, Numba is also able to optimize python code for GPUs that can be used within PyCOMPSs’ tasks.
Task using Numba and a GPU shows an example of a task that performsa matrix multiplication in GPU (code
from Numba documentation).

The main function creates the input and output matrices, and invokes the do_matmul task which has a constraint
of one CPU and one GPU. This task first transfers the necessary data to the GPU using Numba’s cuda module,
then invokes the matmul function (that is decorated with the Numba’s @cuda.jit). When the execution in
the GPU of the ~“matmul finishes, the result is transfered to the cpu with the copy_to_host function and the
task result is returned.

Code 112: Task using Numba and a GPU

import math

from numba import cuda, float64

import numpy as np

from pycompss.api.task import task

from pycompss.api.api import compss_wait_on
from pycompss.api.constraint import constraint

TPB = 16

Ocuda.jit
def matmul(A, B, C):

"""Perform square matriz multiplication of C = A * B

i, j = cuda.grid(2)

(continues on next page)

4.2. Python Binding 113

https://numba.pydata.org/numba-doc/dev/cuda/examples.html

COMPSs Documentation, 3.0

(continued from previous page)

if i < C.shape[0] and j < C.shapel[1]:
tmp = O.
for k in range(A.shape[1]):
tmp += A[i, k] * B[k, j]
Cli, j]l = tmp

Qconstraint (processors=[{'ProcessorType':'CPU', 'ComputingUnits':'1'},
{'ProcessorType':'GPU', 'ComputingUnits':'1'}])
Otask(returns=1)
def do_matmul(a, b, c):
gpu_a = cuda.to_device(a)
gpu_b = cuda.to_device(b)
gpu_c = cuda.to_device(c)

threadsperblock = (TPB, TPB)

blockspergrid_x = math.ceil(gpu_c.shape[0] / threadsperblock[0])
blockspergrid_y = math.ceil(gpu_c.shape[1] / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)

matmul [blockspergrid, threadsperblock] (gpu_a, gpu_b, gpu_c)
¢ = gpu_c.copy_to_host()
return c

def main():
a = np.random.uniform(l, 2, (4, 4))
b = np.random.uniform(1l, 2, (4, 4))
¢ = np.zeros((4, 4))

result = do_matmul(a, b, c)
result = compss_wait_on(result)

print("a: \n %s" % str(a))
print("b: \n %s" % str(b))
print ("Result: \n %s" % str(result))

print("Verification result: ")
print(a @ b)

if __name__=="__main__":

main()

Caution: The function compiled with Numba for GPU can not be a task since the step to transfer the data
to the GPU and backwards needs to be explicitly performed by the user.

For this reason, the appropiate structure is composed by a task that has the necessary constraints, deals with
the data movements and invokes the function compiled with Numba for GPU.

The main application can then invoke the task.

Important: In order to run with GPUs in local machine, you need to define the available GPUs in the project.
xml file.

As example, the following project.xml and resources.xml shall be used with the --project and --resources
correspondingly:

114 Chapter 4. Application development

COMPSs Documentation, 3.0

e project.xml
® resources.xml

More details about Numba and the specification of the signature, declaration and flags can be found in the Numba’s
webpage (http://numba.pydata.org/).

4.2.2 Application Execution

The next subsections describe how to execute applications with the COMPSs Python binding.

4.2.2.1 Environment

The following environment variables must be defined before executing a COMPSs Python application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

4.2.2.2 Command

In order to run a Python application with COMPSs, the runcompss script can be used, like for Java and C/C+-+
applications. An example of an invocation of the script is:

compss@bsc:~$ runcompss \
--lang=python \
--pythonpath=$TEST_DIR \
$TEST_DIR/application.py argl arg2

Or alternatively, use the pycompss module:

compss@bsc:~$ python -m pycompss \
--pythonpath=$TEST_DIR \
$TEST_DIR/application.py argl arg2

Tip: The runcompss command is able to detect the application language. Consequently, the --lang=python is
not mandatory.

Tip: The --pythonpath flag enables the user to add directories to the PYTHONPATH environment variable and
export them into the workers, so that the tasks can resolve successfully its imports.

Tip: PyCOMPSs applications can also be launched without parallelization (as a common python script) by
avoiding the -m pycompss and its flags when using python:

compss@bsc:~$ python $TEST_DIR/application.py argl arg?2

The main limitation is that the application must only contain @task, @binary and/or @mpi decorators and Py-
COMPSs needs to be installed.

For full description about the options available for the runcompss command please check the Ezecuting COMPSs
applications Section.

4.2. Python Binding 115

http://numba.pydata.org/

COMPSs Documentation, 3.0

4.2.3 Integration with Jupyter notebook

PyCOMPSs can also be used within Jupyter notebooks. This feature allows users to develop and run their
PyCOMPSs applications in a Jupyter notebook, where it is possible to modify the code during the execution and
experience an interactive behaviour.

4.2.3.1 Environment Variables

The following libraries must be present in the appropiate environment variables in order to enable PyCOMPSs
within Jupyter notebook:

PYTHONPATH The path where PyCOMPSs is installed (e.g. /opt/COMPSs/Bindings/python/). Please, note
that the path contains the folder 2 and/or 3. This is due to the fact that PyCOMPSs is able to choose the
appropiate one depending on the kernel used with jupyter.

LD LIBRARY PATH The path where the 1ibbindings-commons.so library is located (e.g. <COMPSS_-
INSTALLATION_PATH>/Bindings/bindings-common/1ib/) and the path where the 1ibjvm.so library is lo-
cated (e.g. /usr/lib/jvm/java-8-openjdk/jre/lib/amd64/server/).

4.2.3.2 API calls

In this case, the user is responsible of starting and stopping the COMPSs runtime during the jupyter notebook
execution. To this end, PyCOMPSs provides a module with two main API calls: one for starting the COMPSs
runtime, and another for stopping it.

This module can be imported from the pycompss library:

import pycompss.interactive as ipycompss

And contains two main functions: start and stop. These functions can then be invoked as follows for the COMPSs
runtime deployment with default parameters:

Previous user code/cells

import pycompss.interactive as ipycompss
ipycompss.start ()

User code/cells that can benefit from PyCOMPSs
ipycompss.stop()

Subsequent code/cells

Between the start and stop function calls, the user can write its own python code including PyCOMPSs imports,
decorators and synchronization calls described in the Programming Model Section. The code can be splitted into
multiple cells.

The start and stop functions accept parameters in order to customize the COMPSs runtime (such as the flags
that can be selected with the runcompss command). Table 12 summarizes the accepted parameters of the start
function. Table 13 summarizes the accepted parameters of the stop function.

Parameter Name Parameter Type | Description

log level String Log level Options: "off", "info" and "debug". (Default: "off")
debug Boolean COMPSs runtime debug (Default: False) (overrides log level)

o ¢ Boolean Object conversion to string when possible (Default: False)
graph Boolean Task dependency graph generation (Default: False)

trace Boolean Paraver trace generation (Default: False)

116 Chapter 4. Application development

COMPSs Documentation, 3.0

Parameter Name Parameter Type | Description

monitor Integer Monitor refresh rate (Default: None - Monitoring disabled)

project xml String Path to the project XML file (Default: "$COMPSS/Runtime/configur:
resources_ xml String Path to the resources XML file (Default: "$COMPSs/Runtime/configt
summary Boolean Show summary at the end of the execution (Default: False)

storage impl String Path to an storage implementation (Default: None)

storage conf String Storage configuration file path (Default: None)

task count Integer Number of task definitions (Default: 50)

app_name String Application name (Default: "Interactive")

uuid String Application uuid (Default: None - Will be random)

base log dir String Base directory to store COMPSs log files (a .COMPSs/ folder will be
specific_log dir String Use a specific directory to store COMPSs log files (the folder MUST e
extrae cfg String Sets a custom extrae config file. Must be in a shared disk between all
comm String Class that implements the adaptor for communications. Supported ad
conn String Class that implements the runtime connector for the cloud. Supportec
master name String Hostname of the node to run the COMPSs master (Default: "")
master port String Port to run the COMPSs master communications (Only for NIO adap
scheduler String Class that implements the Scheduler for COMPSs. Supported schedul
jvm_ workers String Extra options for the COMPSs Workers JVMs. Each option separed 1
cpu_affinity String Sets the CPU affinity for the workers. Supported options: "disabled!
gpu_ affinity String Sets the GPU affinity for the workers. Supported options: "disabled
profile input String Path to the file which stores the input application profile (Default: ""
profile output String Path to the file to store the application profile at the end of the execu
scheduler config String Path to the file which contains the scheduler configuration (Default: "
external adaptation Boolean Enable external adaptation (this option will disable the Resource Opt
propatage virtual environment | Boolean Propagate the master virtual environment to the workers (Default: Fa
verbose Boolean Verbose mode (Default: False)

Table 13: PyCOMPSs stop function for Jupyter notebook

Parameter Name | Parameter Type | Description
sync Boolean Synchronize the objects left on the user scope. (Default: False)

The following code snippet shows how to start a COMPSs runtime with tracing and graph generation enabled (with
trace and graph parameters), as well as enabling the monitor with a refresh rate of 2 seconds (with the monitor
parameter). It also synchronizes all remaining objects in the scope with the sync parameter when invoking the
stop function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start(graph=True, trace=True, monitor=2000)

User code that can benefit from PyCOMPSs

ipycompss.stop(sync=True)

Subsequent code

Attention: Once the COMPSs runtime has been stopped it, the value of the variables that have not been
synchronized will be lost.

4.2. Python Binding 117

COMPSs Documentation, 3.0

4.2.3.3 Notebook execution

The application can be executed as a common Jupyter notebook by steps or the whole application.

Important: A message showing the failed task/s will pop up if an exception within them happens.

This pop up message will also allow you to continue the execution without PyCOMPSs, or to restart the COMPSs
runtime. Please, note that in the case of COMPSs restart, the tracking of some objects may be lost (will need to
be recomputed).

More information on the Notebook execution can be found in the Execution Environments Jupyter Notebook
Section.

4.2.3.4 Notebook example

Sample notebooks can be found in the PyCOMPSs Notebooks Section.

4.2.4 Integration with emcee

PyCOMPSs can also be used with emcee in order to enable its execution in distributed environments.

4.2.4.1 Usage
Enabling emcee with PyCOMPSs is easy. Assuming that you have emcee and COMPSs installed, there are two
requirements:

1. Define the sampling function as task
2. Import the PyCOMPSs map module (from pycompss.functions import map as pycompss_pool) and use
it in the EnsembleSampler pool parameter.

4.2.4.2 Sample Application

The following code (Code 113) shows how to enable emcee applications with PyCOMPSs, highlighting the modi-
fications required.

Code 113: emcee with PyCOMPSs application example (sam-
pling pycompss.py)

import time

import numpy as np

import emcee

from pycompss.api.task import task

from pycompss.functions import map as pycompss_pool

def execution_params():
"""Define execution parameters.
np.random.seed (42)
initial = np.random.randn(32, 5)
nwalkers, ndim = initial.shape
nsteps = 10
return initial, nwalkers, ndim, nsteps

nmnn

Otask(returns=1)

(continues on next page)

118 Chapter 4. Application development

https://emcee.readthedocs.io/

COMPSs Documentation, 3.0

(continued from previous page)

def log_prob(theta):
"rSampling function to apply.
time.sleep(0.2) # Computation load simulation
return -0.5 * np.sum(theta**2)

nnn

def emcee_pycompss (params) :
"""emcee usage with PyCOMPSs.
initial, nwalkers, ndim, nsteps = params
sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, pool=pycompss_pool)
start = time.time()
result = sampler.run_mcmc(initial, nsteps, progress=True)
end = time.time()
print ("PyCOMPSs took {0:.1f} seconds".format(end - start))
return result

nmnn

if __name__ == "__main__":

params = execution_params ()
result_pycompss = emcee_pycompss (params)

Tip: The integration is not limited to its usage with the pycompss_pool. It is possible to define more tasks and
invoke them from the emcee_pycompss function in order to parallelize any preprocessing of the initial data or
any postprocessing of the result.

4.2.4.3 Execution

An emcee application parallelized with PyCOMPSs MUST be executed as any COMPSs application (for full
description about the execution environments and options please check the Ezecution Environments Section.).

For example, we can run Code 113 locally (using the PyCOMPSs CLI) with the following script:

pycompss run \
--graph \
sampling_pycompss.py

The execution output is:

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values

[(647) API] - Starting COMPSs Runtime v2.10.rc2205 (build 20220527-0842.
—r791bf7461badlalfab8f45853be7balc28b7bf93)
100

VAD.9:0:00.0:0.0.0:0.0.0.0.0.0.0:0.0:0.0.0.0.0.0.0.0.0.0.0.0.0.0:0.0:0.0 0.0 0.0.0:0.0.0.0 0.0.0:0.0:0:0 0.0 0.0.0:0.0:0:0 0.0.0.0.0:0.0.0:0.0:0.0:0.0:0:0.0:0.0:0.0:0:0.0.0 0.0.0:0.0'¢
—10/10 [00:25<00:00, 2.51s/it]

PyCOMPSs took 31.8 seconds

[(34243) API] - Execution Finished

KXXXXXXXX

(continues on next page)

4.2. Python Binding 119

COMPSs Documentation,

3.0

(continued from previous page)

And the task dependency graph achieved:

066000660660 0060

0000000000000000

0000000000000000
ssccocccevsvesve
000cccecevvv0RRY
0000000000000000
csecocccovono0ee
000600006000 0000

Figure 6: Task dependency graph of the Code 113 execution

Tip: The larger the initial array, the more parallelism can be achieved (larger width in the task dependency
graph enabling to be executed in more resources).

If the nsteps is increased, the more iterations will be performed (larger height in the task dependency graph).

120

Chapter 4. Application development

COMPSs Documentation, 3.0

4.3 C/C++ Binding

COMPSs provides a binding for C and C++ applications. The new C++ version in the current release comes with
support for objects as task parameters and the use of class methods as tasks.

4.3.1 Programming Model

As in Java, the application code is divided in 3 parts: the Task definition interface, the main code and task
implementations. These files must have the following notation,: <app ame>.idl, for the interface file, <app -

name>.cc for the main code and <app name>-functions.cc for task implementations. Next paragraphs provide
an example of how to define this files for matrix multiplication parallelised by blocks.

Task Definition Interface

As in Java the user has to provide a task selection by means of an interface. In this case the interface file has the
same name as the main application file plus the suffix “idl”, i.e. Matmul.idl, where the main file is called Matmul.cc.

Code 114: Matmul.idl

interface Matmul
{
// C functions
void initMatrix(inout Matrix matrix,
in int mSize,
in int nSize,
in double val);

void multiplyBlocks(inout Block blockl,
inout Block block2,
inout Block block3);
+;

The syntax of the interface file is shown in the previous code. Tasks can be declared as classic C function prototypes,
this allow to keep the compatibility with standard C applications. In the example, initMatrix and multiplyBlocks
are functions declared using its prototype, like in a C header file, but this code is C++ as they have objects as
parameters (objects of type Matrix, or Block).

The grammar for the interface file is:

["static"] return-type task-name (parameter {, parameter }*);
return-type = "void" | type
ask-name = <qualified name of the function or method>

parameter = direction type parameter-name

direction = "in" | "out" | "inout"

type = "char" | "int" | "short" | "long" | "float" | "double" | "boolean" |
"char[<size>]" | "int[<size>]" | "short[<size>]" | "long[<size>]" |
"float[<size>]" | "double[<size>]" | "string" | "File" | class-name

class-name = <qualified name of the class>

4.3. C/C++ Binding 121

COMPSs Documentation, 3.0

Main Program

The following code shows an example of matrix multiplication written in C++.

Code 115: Matrix multiplication

#include "Matmul.h"

#include "Matriz.h"

#anclude "Block.h"

int N; //MSIZE

int M; //BSIZE

double val;

int main(int argc, char **argv)

{

Matrix A;
Matrix B;
Matrix C;

N = atoi(argv[i]);
M = atoi(argv[2]);
val = atof (argv[3]);

compss_on() ;
A = Matrix::init(N,M,val);

initMatrix(&B,N,M,val);
initMatrix(&C,N,M,0.0);

cout << "Waiting for initialization...\n";

compss_wait_on(B);
compss_wait_on(C);

cout << "Initialization ends...\n";
C.multiply(A, B);

compss_off () ;
return 0O;

The developer has to take into account the following rules:

1.

A header file with the same name as the main file must be included, in this case Matmul.h. This header
file is automatically generated by the binding and it contains other includes and type-definitions that are
required.

A call to the compss__on binding function is required to turn on the COMPSs runtime.

As in C language, out or inout parameters should be passed by reference by means of the “&” operator before
the parameter name.

. Synchronization on a parameter can be done calling the compss _wait _on binding function. The argument

of this function must be the variable or object we want to synchronize.

There is an implicit synchronization in the init method of Matrix. It is not possible to know the address
of “A” before exiting the method call and due to this it is necessary to synchronize before for the copy of the
returned value into “A” for it to be correct.

A call to the compss_ off binding function is required to turn off the COMPSs runtime.

122

Chapter 4. Application development

COMPSs Documentation, 3.0

Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#include "Matmul.h"
#include "Matrixz.h"
#include "Block.h'"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
*matrix = Matrix::init(mSize, nSize, val);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*¥block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

The following sections provide a more detailed view of the C++ Binding. It will include the available API calls,
how to deal with objects and having tasks as method objects as well as how to define constraints and task versions.

4.3.1.1 Binding API

Besides the aforementioned compss on, compss off and compss wait on functions, the C/C++ main
program can make use of a variety of other API calls to better manage the synchronization of data generated by
tasks. These calls are as follows:

void compss_ifstream(char * filename, ifstream™ & * ifs) Given an uninitialized input stream ifs and a
file filename, this function will synchronize the content of the file and initialize ifs to read from it.

void compss_ofstream(char * filename, ofstream™ & * ofs) Behaves the same way as compss_ ifstream,
but in this case the opened stream is an output stream, meaning it will be used to write to the file.

FILE* compss_fopen(char * file name, char * mode) Similar to the C/C++ fopen call. Synchronizes
with the last version of file file name and returns the FILE* pointer to further reference it. As the mode
parameter it takes the same that can be used in fopen (r, w, a, r+, w+ and a+).

void compss _wait _on(T** & * obj) or T compss_wait _on(T* & * obj) Synchronizes for the last ver-
sion of object obj, meaning that the execution will stop until the value of obj up to that point of the code is
received (and thus all tasks that can modify it have ended).

void compss _delete file(char * file _name) Makes an asynchronous delete of file filename. When all previ-
ous tasks have finished updating the file, it is deleted.

void compss _delete object(T** & * obj) Makes an asynchronous delete of an object. When all previous
tasks have finished updating the object, it is deleted.

void compss_barrier() Similarly to the Python binding, performs an explicit synchronization without a return.
When a compss_ barrier is encountered, the execution will not continue until all the tasks submitted before
the compss_ barrier have finished.

4.3. C/C++ Binding 123

COMPSs Documentation, 3.0

4.3.1.2 Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#include "Matmul.h"
#include "Matrixz.h"
#include "Block.h"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
smatrix = Matrix::init(mSize, nSize, val);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*¥block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

4.3.1.3 Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

4.3.1.4 Class Serialization

In case of using an object as method parameter, as callee or as return of a call to a function, the object has to be
serialized. The serialization method has to be provided inline in the header file of the object’s class by means of
the “boost” library. The next listing contains an example of serialization for two objects of the Block class.

#ifndef BLOCK_H
#define BLOCK_H

#anclude <vector>

#include <boost/archive/text_iarchive.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/serialization/serialization.hpp>
#include <boost/serialization/access.hpp>
#include <boost/serialization/vector.hpp>

using namespace std;
using namespace boost;
using namespace serialization;

class Block {
public:
Block (O {};
Block(int bSize);
static Block *init(int bSize, double initVal);
void multiply(Block blockl, Block block2);

(continues on next page)

124 Chapter 4. Application development

COMPSs Documentation, 3.0

(continued from previous page)

void print();

private:
int M;
std::vector< std::vector< double > > data;

friend class::serialization::access;

template<class Archive>

void serialize(Archive & ar, const unsigned int version) {
ar & M;
ar & data;

s
#endif

For more information about serialization using “boost” visit the related documentation at www.boost.org
<www.boost.org>.

4.3.1.5 Method - Task

A task can be a C++ class method. A method can return a value, modify the this object, or modify a parameter.

If the method has a return value there will be an implicit synchronization before exit the method, but for the this
object and parameters the synchronization can be done later after the method has finished.

This is because the this object and the parameters can be accessed inside and outside the method, but for the
variable where the returned value is copied to, it can’t be known inside the method.

#include "Block.h'"

Block: :Block(int bSize) {
M = bSize;
data.resize(M);
for (int i=0; i<M; i++) {
datali] .resize(M);
}
}

Block #*Block::init(int bSize, double initVal) {
Block *block = new Block(bSize);
for (int i=0; i<bSize; i++) {
for (int j=0; j<bSize; j++) {
block->datal[i] [j] = initVal;
}
}

return block;

#1ifdef COMPSS_WORKER

void Block: :multiply(Block blockl, Block block2) {
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
for (int k=0; k<M; k++) {
datal[i] [j] += blockl.datal[i] [k] * block2.datalk] [j];
}

(continues on next page)

4.3. C/C++ Binding 125

COMPSs Documentation, 3.0

(continued from previous page)

}
}
this->print();

#endif

void Block::print() {
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
cout << datali][j] << " ";
}

cout << "\r\n";

4.3.1.6 Task Constraints

The C/C++ binding also supports the definition of task constraints. The task definition specified in the IDL
file must be decorated/annotated with the @Constraints. Below, you can find and example of how to define a
task with a constraint of using 4 cores. The list of constraints which can be defined for a task can be found in
Section [sec:Constraints]

interface Matmul

{
@Constraints (ComputingUnits = 4)
void multiplyBlocks(inout Block blockl,
in Block block2,
in Block block3);
};

4.3.1.7 Task Versions

Another COMPSs functionality supported in the C/C++ binding is the definition of different versions for a
tasks. The following code shows an IDL file where a function has two implementations, with their corresponding
constraints. It show an example where the multiplyBlocks GPU is defined as a implementation of multiplyBlocks
using the annotation/decoration @Implements. It also shows how to set a processor constraint which requires a
GPU processor and a CPU core for managing the offloading of the computation to the GPU.

interface Matmul
{
@Constraints (ComputingUnits=4) ;
void multiplyBlocks(inout Block blockl,
in Block block2,
in Block block3);

// GPU implementation
@Constraints(processors={
@Processor (ProcessorType=CPU, ComputingUnits=1)});
@Processor (ProcessorType=GPU, ComputingUnits=1)});
@Implements (multiplyBlocks) ;
void multiplyBlocks_GPU(inout Block blockil,
in Block block2,

(continues on next page)

126 Chapter 4. Application development

COMPSs Documentation, 3.0

(continued from previous page)

in Block block3);

};

4.3.2 Use of programming models inside tasks

To improve COMPSs performance in some cases, C/C++ binding offers the possibility to use programming models
inside tasks. This feature allows the user to exploit the potential parallelism in their application’s tasks.

4.3.2.1 OmpSs

COMPSs C/C++ binding supports the use of the programming model OmpSs. To use OmpSs inside COMPSs tasks
we have to annotate the implemented tasks. The implementation of tasks was described in section [sec:functionsfile].
The following code shows a COMPSs C/C++ task without the use of OmpSs.

void compss_task(int* a, int N) {

int 1i;

for (i = 0; i < N; ++1i) {
ali]l = i;

}

}

This code will assign to every array element its position in it. A possible use of OmpSs is the following.

void compss_task(int* a, int N) {
int i;
for (i = 0; 1 < N; ++i) {
#pragma omp task
{
ali]l = i;
}
}
}

This will result in the parallelization of the array initialization, of course this can be applied to more complex
implementations and the directives offered by OmpSs are much more. You can find the documentation and
specification in https://pm.bsc.es/ompss.

There’s also the possibility to use a newer version of the OmpSs programming model which introduces significant
improvements, OmpSs-2. The changes at user level are minimal, the following image shows the array initialization
using OmpSs-2.

void compss_task(int* a, int N) {
int 1i;

for (i = 0; i < N; ++i) {
#pragma oss task
{
alil = i;
b
}

Documentation and specification of OmpSs-2 can be found in https://pm.bsc.es/ompss-2.

4.3. C/C++ Binding 127

https://pm.bsc.es/ompss
https://pm.bsc.es/ompss-2

COMPSs Documentation, 3.0

4.3.3 Application Compilation

To compile user’s applications with the C/C++ binding two commands are used: The “compss build _app’
command allows to compile applications for a single architecture, and the “compss _build _app multi arch”
command for multiple architectures. Both commands must be executed in the directory of the main application
code.

4.3.3.1 Single architecture

The user command “compss__build _app” compiles both master and worker for a single architecture (e.g. x86-64,
armhf, etc). Thus, whether you want to run your application in Intel based machine or ARM based machine, this
command is the tool you need.

When the target is the native architecture, the command to execute is very simple;

$~/matmul _objects> compss_build_app Matmul

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64//
—jre/lib/amd64/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

[Info] The target host is: x86_64-linux-gnu

Building application for master...

g+t+ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
—0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -oy
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

In order to build an application for a different architecture e.g. armhf, an environment must be provided, indicating
the compiler used to cross-compile, and also the location of some COMPSs dependencies such as java or boost
which must be compliant with the target architecture. This environment is passed by flags and arguments;

Please note that to use cross compilation features and multiple architecture builds, you need to do the proper
installation of COMPSs, find more information in the builders README.

$~/matmul _objects> compss_build_app --cross-compile --cross-compile-prefix=arm-linux-
—.gnueabihf- --java_home=/usr/lib/jvm/java-1.8.0-openjdk-armhf Matmul

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-armhf/
—jre/lib/arm/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

[INFO] You enabled cross-compile and the prefix to be used is: arm-linux-gnueabihf-

[INFO] The target host is: arm-linux-gnueabihf

(continues on next page)

128 Chapter 4. Application development

COMPSs Documentation, 3.0

(continued from previous page)

Building application for master...

g+t+ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
-0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -o
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

[The previous outputs have been cut for simplicity]

The —cross-compile flag is used to indicate the users desire to cross-compile the application. It enables the use of
—cross-compile-prefix flag to define the prefix for the cross-compiler. Setting $CROSS COMPILE environment
variable will also work (in case you use the environment variable, the prefix passed by arguments is overrided
with the variable value). This prefix is added to $CC and $CXX to be used by the user Makefile and lastly
by the GNU toolchain . Regarding java and boost, —java_home and —boostlib flags are used respectively. In
this case, users can also use teh $JAVA HOME and $BOOST LIB variables to indicate the java and boost for
the target architecture. Note that these last arguments are purely for linkage, where $LD LIBRARY PATH is
used by Uniz/Linuz systems to find libraries, so feel free to use it if you want to avoid passing some environment
arguments.

4.3.3.2 Multiple architectures

The user command “compss _build app multi arch” allows a to compile an application for several archi-
tectures. Users are able to compile both master and worker for one or more architectures. Environments for the
target architectures are defined in a file specified by *c*fg flag. Imagine you wish to build your application to
run the master in your Intel-based machine and the worker also in your native machine and in an ARM-based
machine, without this command you would have to execute several times the command for a single architecture
using its cross compile features. With the multiple architecture command is done in the following way.

$~/matmul_objects> compss_build_app_multi_arch --master=x86_64-linux-gnu --worker=arm-linux-
—gnueabihf,x86_64-1linux-gnu Matmul

[INFO] Using default configuration file: /opt/COMPSs/Bindings/c/cfgs/compssrc.

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64/
—jre/lib/amd64/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...
g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.

—v (continues on next page)

4.3. C/C++ Binding 129

COMPSs Documentation, 3.0

(continued from previous page)

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -o
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful. # The master for x86_64-linux-gnu compiled successfuly

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-armhf/
—jre/lib/arm/server
[INFO] Boost libraries are searched in the directory: /opt/install-arm/libboost

Building application for master...

arm-linux-gnueabihf-g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc
—Matrix.cc

ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

arm-linux-gnueabihf-g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -
—c Block.cc -o Block.o

arm-linux-gnueabihf-g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -
—cC Matrix.cc -o Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful. # The worker for arm-linux-gnueabihf compiled successfuly

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64/
—jre/lib/amd64/server
[INFO] Boost libraries are searched in the directory: /usr/lib/

Building application for master...

g+t+ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
=0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -oy
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

(continues on next page)

130 Chapter 4. Application development

COMPSs Documentation, 3.0

(continued from previous page)

Command successful. # The worker for x86_64-linux-gnu compiled successfuly

[The previous output has been cut for simplicity]

Building for single architectures would lead to a directory structure quite different than the one obtained using
the script for multiple architectures. In the single architecture case, only one master and one worker directories
are expected. In the multiple architectures case, one master and one worker is expected per architecture.

| -- arm-linux-gnueabihf

| “-- worker

| “-- gsbuild

| “-- automédte.cache
| -- src

| -- x86_64-linux-gnu

| | -- master

| | ~-- gsbuild

| | “-- autométe.cache
| *-- worker

| “-- gsbuild

| “-- autométe.cache
T-- xml

(Note than only directories are shown).

4.3.3.3 Using OmpSs

As described in section [sec:ompss| applications can use OmpSs and OmpSs-2 programming models. The compila-
tion process differs a little bit compared with a normal COMPSs C/C++ application. Applications using OmpSs
must be compiled using the --ompss option in the compss build _app command.

$~/matmul_objects> compss_build_app --ompss Matmul

Executing the previous command will start the compilation of the application. Sometimes due to configuration
issues OmpSs can not be found, the option --with_ompss=/path/to/ompss specifies the OmpSs path that the
user wants to use in the compilation.

Applications using OmpSs-2 are similarly compiled. The options to compile with OmpSs-2 are --ompss-2 and
--with_ompss-2=/path/to/ompss-2

$~/matmul_objects> compss_build_app --with_ompss-2=/home/mdomingu/ompss-2 --ompss-2 Matmul

Remember that additional source files can be used in COMPSs C/C++ applications, if the user expects OmpSs or
OmpSs-2 to be used in those files she, must be sure that the files are properly compiled with OmpSs or OmpSs-2.

4.3. C/C++ Binding 131

COMPSs Documentation, 3.0

4.3.4 Application Execution

The following environment variables must be defined before executing a COMPSs C/C++ application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

After compiling the application, two directories, master and worker, are generated. The master directory contains
a binary called as the main file, which is the master application, in our example is called Matmul. The worker
directory contains another binary called as the main file followed by the suffix “-worker”, which is the worker
application, in our example is called Matmul-worker.

The runcompss script has to be used to run the application:

$ runcompss /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The complete list of options of the runcompss command is available in Section Fzecuting COMPSs applications.

4.3.5 Task Dependency Graph

COMPSs can generate a task dependency graph from an executed code. It is indicating by a

$ runcompss -g /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The generated task dependency graph is stored within the $HOME/ . COMPSs/<APP_NAME>_<00-99>/monitor direc-
tory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot viewer.
COMPSs also provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/Matmul_02/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

The following figure depicts the task dependency graph for the Matmul application in its object version with 3x3
blocks matrices, each one containing a 4x4 matrix of doubles. Each block in the result matrix accumulates three
block multiplications, i.e. three multiplications of 4x4 matrices of doubles.

N = 3, Matrix size
M = 4, Block size
Parallel tasks
[3x3] Matrix = 9 blocks
| o Each block
é accumulates 3
[4x4] matrix
multiplications
Implicit

synchronization

Explicit
synchronizations

Figure 7: Matmul Execution Graph.

The light blue circle corresponds to the initialization of matrix “A” by means of a method-task and it has an
implicit synchronization inside. The dark blue circles correspond to the other two initializations by means of

132 Chapter 4. Application development

COMPSs Documentation, 3.0

function-tasks; in this case the synchronizations are explicit and must be provided by the developer after the task
call. Both implicit and explicit synchronizations are represented as red circles.

Each green circle is a partial matrix multiplication of a set of 3. One block from matrix “A” and the correspondent
one from matrix “B”. The result is written in the right block in “C” that accumulates the partial block multipli-
cations. Each multiplication set has an explicit synchronization. All green tasks are method-tasks and they are
executed in parallel.

4.4 Constraints

This section provides a detailed information about all the supported constraints by the COMPSs runtime for Java,
Python and C/C++ languages. The constraints are defined as key-value pairs, where the key is the name of
the constraint. Table 14 details the available constraints names for Java, Python and C/C++, its value type, its
default value and a brief description.

4.4. Constraints 133

COMPSs Documentation,

3.0

Table 14: Arguments of the @constraint decorator

Java Python C/C++ Value type Default value Description
computingUnits | computing - ComputingU- <string> “1” Required num-
units nits ber of comput-
ing units
processorName | processor - ProcessorName | <string> “lunassigned|” Required pro-
name cessor name
processorSpeed | processor - ProcessorSpeed | <string> “[unassigned]” Required pro-
speed cessor speed
processorArchi- | processor ar- ProcessorArchi- | <string> “[unassigned|” Required pro-
tecture chitecture tecture cessor architec-
ture
processorType processor _type | ProcessorType <string> “[unassigned|” Required pro-
cessor type
processorProp- processor - ProcessorProp- | <string> “|unassigned|” Required pro-
ertyName property name | ertyName cessor property
processorProp- processor _ - ProcessorProp- | <string> “[unassigned]” Required pro-
erty Value property value | ertyValue cessor property
value
processorlnter- | processor in- ProcessorInter- | <string> “[unassigned]” Required inter-
nalMemorySize | ternal mem- nalMemorySize nal device mem-
ory _size ory
processors processors R List<@Processor“{}” Required pro-
cessors (check
Table 15 for
Processor de-
tails)
memorySize memory _size MemorySize <string> “[unassigned]” Required mem-
ory size in GBs
memoryType memory _type MemoryType <string> “[unassigned|” Required
memory
type (SRAM,
DRAM, etc.)
storageSize storage _size StorageSize <string> “[unassigned|” Required stor-
age size in
GBs
storageType storage type StorageType <string> “[unassigned|” Required stor-
age type (HDD,
SSD, etc.)
operatingSys- operating sys- | OperatingSys- <string> “[unassigned|” Required op-
temType tem_type temType erating system
type (Windows,
MacOS, Linux,
etc.)
operatingSys- operating sys- | OperatingSys- <string> “[unassigned]” Required op-
temDistribution | tem distribu- temDistribution erating system
tion distribution
(XP, Sierra,
openSUSE,
etc.)
operatingSys- operating sys- OperatingSys- <string> “[unassigned|” Required op-
temVersion tem_version temVersion erating system
version
wallClockLimit | wall clock - WallClockLimit | <string> “lunassigned|” Maximum wall
limit clock time
hostQueues host _queues HostQueues <string> “[unassigned]” Required
queues
appSoftware app_ software AppSoftware <string> “[unassigned|” Required ap-
134 Chapter 4. Applicati hc(?t'(gl\(f)gfop%lglgt

able within the
remote node for
the task

COMPSs Documentation, 3.0

All constraints are defined with a simple value except the HostQueue and AppSoftware constraints, which allow
multiple values.

The processors constraint allows the users to define multiple processors for a task execution. This constraint is
specified as a list of @Processor annotations that must be defined as shown in Table 15

Table 15: Arguments of the @Processor decorator

Annotation Value type | Default value | Description

processorType <string> “CpU” Required processor type (e.g. CPU or GPU)
computingUnits <string> “1” Required number of computing units

name <string> “|unassigned|” | Required processor name

speed <string> “lunassigned|” | Required processor speed

architecture <string> “lunassigned|” | Required processor architecture
propertyName <string> “[unassigned|” | Required processor property

propertyValue <string> “|unassigned]” | Required processor property value
internalMemorySize | <string> “[unassigned|” | Required internal device memory

4.4. Constraints 135

COMPSs Documentation, 3.0

136 Chapter 4. Application development

Chapter 5

Execution Environments

This section is intended to show how to execute the COMPSs applications.

5.1 Schedulers

This section provides detailed information about all the schedulers that are implemented in COMPSs and can be
used for the executions of the applications. Depending on the scheduler selected for your executions the tasks will
be scheduled in a way or another and this will result in different execution times depending on the scheduler used.

COMPSs schedulers are organized in three families:

e Order strict: Policies give a priority to those tasks that become dependency free tasks. Only the dependency-
free task with a higher priority can be submitted to execution. Tasks with lower priority can not overtake
the execution of higher-priority tasks even if there are free resources that could host the execution of the
former ones.

e Lookahead: As with o the order-strict family, policies give tasks a priority when they become dependency
free. However, in this case, if there are not enough resources to host the execution of the highest-priority
dependency-free task, another task with a lower priority can be submitted for execution overtaking the
execution of the most prioritary one.

— Successors: Within this family, an important group of schedulers give a higher priority to the tasks that
become dependency-free when trying to submit an action to fill the resources released by their data
predecessor.

e Full graph: Unlike the other two families that only consider dependency-free tasks, full-graph policies schedule
the whole graph of the application on the currently available resources. Besides task dependencies, full-graph
policies declare resources dependencies among tasks to guarantee resource constraints, and redefines them
dynamically to optimize the execution.

Schedulers provided within the COMPSs release:

137

COMPSs Documentation, 3.0
Table 16: Schedulers
Class name Family | Description Comments
es.bsc.compss.scheduler.orderstuidérfifo. FPaTBatizes task generation order (FIFO).
strict
es.bsc.compss.scheduler.lookdhlewkdifo. FFiffGratizes task generation order (FIFO).
head
es.bsc.compss.scheduler.lookghlewkdifo. ILilefiGratizes task generation order (LIFO).
head
es.bsc.compss.scheduler.lookghksukde calitPlioratizgd Sata location and then (FIFO) | Default on runcompss ex-
head task generation. ecutions
es.bsc.compss.scheduler.lookdhleukauccesRisififiikesalite Fsfoloessditsy B the ended | Default for local disk ex-
head - | task, then the data locality on the worker | ecutions on SCs
succes- | and then generation order (FIFO).
sors

es.bsc.compss.scheduler.lookdhlewkant .spdeersratififolddwlitsuFitokosnlitfy Fhe ended | Multi-threaded — imple-

head - | task, then the data locality on the worker | mentation. Default for
succes- | and then generation order (FIFO). shared disk executions
sors on SCs

es.bsc.compss.scheduler.lookdhlowkauccesRiieiamstsailtsfifuccosstraints Rite Téhded
head - | task, then the task constraints (com-
succes- | puting units) and then generation order
sors (FIFO).

es.bsc.compss.scheduler.lookghkeaskant .snideersratizemstheindafitesSonss tofintel ifoldSd

Multi-threaded imple-

head - | task, then the task constraints (com- | mentation
succes- | puting units) and then generation order
sors (FIFO).

es.bsc.compss.scheduler.fullgrapilmultipiestvedSaiedalgective function (time,

graph energy, cost).

Specifying the --scheduler=<class> option when launching a COMPSs execution with enqueue_compss or
runcompss selects the scheduler that will drive the execution. In the case of having an agents deployment,
the option indicates the scheduler used by that agent; agents deployment allows combining different scheduling
strategies by setting up a different policy on each agent.

With the --input_profile=<path> option, application users can pass in to COMPSs the task profiles obtained
from previous executions. Thus, the scheduler makes better decisions from an early time of the execution. To
indicate the runtime a file where to save these profiles at the end of the execution, it is necessary that the user
specifies the --output_profile=<path> option. If both paths match, the runtime will update its content.

5.2 Checkpointing

COMPSs and PyCOMPSs allow for task-level checkpointing. This feature allows the user to combine different
checkpointing mechanisms to save the progress of an application execution (i.e., completed tasks and their output
values) to recover it in the case of a failure. This section provides information on how to use the checkpointing
recovery system.

Application developers can request the COMPSs runtime to checkpoint the application progress with the snapshot
method of the API. When this method is invoked, the final version of each data value produced by any task of the
application will be checkpointed. Upcoming executions will be able to resume the execution from that point with
no additional development effort.

Java example:

import es.bsc.compss.api.COMPSs;

COMPSs . snapshot () ;

138 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

Python example:

from pycompss.api.api import compss_snapshot

compss_snapshot ()

In addition, the COMPSs runtime system provides three mechanisms to perform an automatic checkpointing of
the application: * Periodic checkpointing: periodically saves the application progress in configurable intervals of
n hours, minutes, or seconds. * Finished tasks: triggers the checkpointing of the application progress upon the
completion on n non-checkpointed tasks. * Tasks groups: this mechanism allows the definition of custom policies
to checkpoint the application progress. A customizable policy assigns each task to a checkpointing group at task
instantiation time. When all the tasks within the group have been instantiated — the policy closes the group —, the
checkpoint manager determines the final version of each data produced by the tasks within the group. As tasks
producing these values complete their computation, checkpoint manager requests a copy to checkpoint that value.

To develop checkpointing policies, checkpointing policy developer need to create a Java class extending
the CheckpointManagerImpl class (es.bsc.compss.checkpoint.CheckpointManagerImpl) and implement the
assignTaskToGroup method. The assignTaskToGroup method is invoked every time that the runtime instanti-
ates a class and its purpose is to assign a task group to that task. To that end the policy can use any information
related to the task; e.g., id of the task, method to execute, accessed data versions on its parameters, etc. Once
the group is determined, the policy has to invoke the addTaskToGroup method to let the checkpoint manager to
which group the task belongs. In addition, if the policy determines that all the tasks within the group have been
instantiated, it needs to close the group using the closeGroup method.

The following snippet shows an example of a checkpoint policy implementation creating groups of N tasks subse-
quently instantiated.

Checkpoint polocy implementation

public class CheckpointPolicyInstantiatedGroup extends CheckpointManagerImpl {

private int currentGroup = 0;
private int groupSize = 3;
public CheckpointPolicyInstantiatedGroup(HashMap<String, String> config, AccessProcessor,,
—ap) {
super(config, 0, 0, ap);
this.groupsize = config.get("instantiated.group");

@0verride
protected void assignTaskToGroup(Task t) {
// Assign the task to the decided group
CheckpointGroupImpl group = this.addTaskToGroup(t, String.valueOf (countingGroup)) ;
// If the group reaches its size of closure it closes (in this case is 1)
if (group.getSize() == groupSize) {
this.closeGroup(String.valueOf (countingGroup)) ;
countingGroup += 1;

COMPSs release contains three pre-defined policies, each leveraging on only one of these mechanisms:

Table 17: Checkpointing
Policy name Class name Params Description
Periodic Time (PT) es.bsc.compss.checkpoint.policies. Checkpoint Hoheyldekiodie Tliththeckpoints every n time
Finished Tasks (FT) | es.bsc.compss.checkpoint.policies.Checkpoint PoliayFinished Taiseckpoints every n fin-
ished.tasks | ished tasks
Instantiated Tasks | es.bsc.compss.checkpoint.policies.Checkpoint Holissthistiantiatedtheskpoints every n in-
Group (ITG) ated.group | stantiated tasks

5.2. Checkpointing 139

COMPSs Documentation, 3.0

In order to use checkpointing it is needed to specify three flags in the enqueue_compss and runcompss. These are:
* —-checkpointer: This parameter lets you choose the checkpointing policy, and assign one of the class names. *
--checkpointer_params: This parameter lets you choose the checkpointing span, depending on the policy the user
has to choose the corresponding param from the table (in the time case the user has to define the time in either s
(seconds), m (minutes) or h (hours), and other options that will be explained later on. * --checkpointer_folder:
This parameter defines the folder where the checkpoints will be saved.

As an additional feature the user can avoid checkpointing a specific task, that may have a big overhead on the
filesystem by passing the list of signature names in the checkpointer_params flag using the following parameter
avoid.checkpoint

An example of usage would be the following:

--checkpointer_params=period.time:s,avoid.checkpoint: [checkpoint_file_test.increment] \
--checkpointer=es.bsc.compss.checkpointer.policies.CheckpointPolicyPeriodicTime \
--checkpointer_folder=/tmp/checkpointing/ \

5.3 Deployments

This section is intended to show how to execute the COMPSs applications deploying COMPSs.

5.3.1 Master-Worker Deployments

This section is intended to show how to execute the COMPSs applications deploying COMPSs as a master-worker
structure.

5.3.1.1 Local

This section is intended to walk you through the COMPSs usage in local machines.
Executing COMPSs applications

Prerequisites

Prerequisites vary depending on the application’s code language: for Java applications the users need to have a jar
archive containing all the application classes, for Python applications there are no requirements and for C/C+-+
applications the code must have been previously compiled by using the compss _build app command.

For further information about how to develop COMPSs applications please refer to Application development.

Runcompss command

COMPSs applications are executed using the runcompss command:

compss@bsc:~$ runcompss [options] application_name [application_arguments]

The application name must be the fully qualified name of the application in Java, the path to the .py file containing
the main program in Python and the path to the master binary in C/C++.

The application arguments are the ones passed as command line to main application. This parameter can be
empty.

The runcompss command allows the users to customize a COMPSs execution by specifying different options. For
clarity purposes, parameters are grouped in Runtime configuration, Tools enablers and Advanced options.

140 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

compss@bsc:~$ runcompss -h

Usage: /opt/COMPSs/Runtime/scripts/user/runcompss [options] application_name application_

—arguments
* Options:
General:
--help, -h
--opts
--version, -v
Tools enablers:
--graph=<bool>, --graph, -g
--tracing=<bool>, --tracing, -t
--monitoring=<int>, --monitoring, -m
--external_debugger=<int>,
--external_debugger
—specified port (or 9999 if empty)

--jmx_port=<int>

Runtime configuration options:
--task_execution=<compss|storage>

--storage_impl=<string>

Print this help message
Show available options

Print COMPSs version

Generation of the complete graph (true/false)
When no value is provided it is set to true
Default: false

Set generation of traces.

Default: false

Period between monitoring samples (milliseconds)
When no value is provided it is set to 2000
Default: O

Enables external debugger connection on they
Default: false

Enable JVM profiling on specified port

Task execution under COMPSs or Storage.
Default: compss
Path to an storage implementation. Shortcut toy

—setting pypath and classpath. See Runtime/storage in your installation folder.

--storage_conf=<path>
--project=<path>

—projects/default_project.xml
--resources=<path>

—resources/default_resources.xml
--lang=<name>

--summary
—the application execution

--log_level=<level>, --debug, -d
—trace

—disabling asserts and __debug__
Advanced options:
--extrae_config_file=<path>

—shared disk between all COMPSs workers.

—tracing/extrae_basic.xml

Path to the storage configuration file

Default: null

Path to the project XML file

Default: /opt/COMPSs//Runtime/configuration/xml/

Path to the resources XML file
Default: /opt/COMPSs//Runtime/configuration/xml/

Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java

Displays a task execution summary at the end of,

Default: false
Set the debug level: off | info | api | debug |

Warning: Off level compiles with -02 optiony

Default: off

Sets a custom extrae config file. Must be in aj

Default: /opt/COMPSs//Runtime/configuration/xml/

(continues on next page)

5.3. Deployments

141

COMPSs Documentation, 3.0

(continued from previous page)

--extrae_config_file_python=<path>

Sets a custom extrae config file for python. Musty

—be in a shared disk between all COMPSs workers.

--trace_label=<string>

—used in the case of tracing is activated.

--tracing_task_dependencies=<bool>

—dependencies (true/false)

--generate_trace=<bool>

Default: null
Add a label in the generated trace file. Onlyy

Default: None
Adds communication lines for the task

Default: false
Converts the events register into a trace file.,

—0nly used in the case of activated tracing.

--delete_trace_packages=<bool>

—the run.

—trace is not generated.
--custom_threads=<bool>

Default: true
If true, deletes the tracing packages created by,

Default: true. Automatically, disabled if thej

Threads in the trace file are re-ordered and

—customized to indicate the function of the thread.

—trace file generated.

--comm=<ClassName>
—communications

--conn=<className>
—the cloud
—DefaultSSHConnector
—DefaultNoSSHConnector
—DefaultSSHConnector
--streaming=<type>
--streaming_master_name=<str>
--streaming_master_port=<int>

--scheduler=<className>

—TaskScheduler
—fifo.FifoTS
—FifoTS
—LifoTS

—locality.LocalityTS

Only used when the tracing is activated and a

Default: true
Class that implements the adaptor fory

Supported adaptors:
t:: es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor
Default: es.bsc.compss.nio.master.NIOAdaptor
Class that implements the runtime connector forj

Supported connectors:
es.bsc.compss.connectors.

L— es.bsc.compss.connectors.
Default: es.bsc.compss.connectors.

Enable the streaming mode for the given type.

Supported types: FILES, OBJECTS, PSCOS, ALL, NONE

Default: NONE

Use an specific streaming master node name.

Default: null

Use an specific port for the streaming master.

Default: null

Class that implements the Scheduler for COMPSs

Supported schedulers:
es.bsc.compss.components.impl.

es.bsc.compss.scheduler.orderstrict.
es.bsc.compss.scheduler.lookahead.fifo.
es.bsc.compss.scheduler.lookahead.lifo.

es.bsc.compss.scheduler.lookahead.

T 1T T T1TT

es.bsc.compss.scheduler.lookahead.

—Successors.constraintsfifo.ConstraintsFifoTs

(continues on next page)

142

Chapter 5. Execution Environments

COMPSs Documentation, 3.0

(continued from previous page)

F—— es.bsc.compss.scheduler.lookahead.mt.

—successors.constraintsfifo.ConstraintsFifoTS

—successors.fifolocality.FifoLocalityTS
—successors.fifolocality.FifolLocalityTS
—locality.LocalityTS
--scheduler_config_file=<path>
—configuration.
--checkpoint=<className>
—policy
—CheckpointPolicyInstantiatedGroup
—CheckpointPolicyPeriodicTime
—CheckpointPolicyFinishedTasks

—NoCheckpoint

—NoCheckpoint
--checkpoint_params=<string>

--checkpoint_folder=<path>

--library_path=<path>
—(e.g. Java JVM library, Python library, C

--classpath=<path>
--appdir=<path>

--pythonpath=<path>
—PYTHONPATH

--env_script=<path>
—environment variables are defined.

—application.

--base_log_dir=<path>

F—— es.bsc.compss.scheduler.lookahead.

— es.bsc.compss.scheduler.lookahead.mt.
Default: es.bsc.compss.scheduler.lookahead.
Path to the file which contains the schedulery

Default: Empty
Class that implements the Checkpoint Management

Supported checkpoint policies:
es.bsc.compss.checkpoint.policies.

es.bsc.compss.checkpoint.policies.

es.bsc.compss.checkpoint.policies.

T T

es.bsc.compss.checkpoint.policies.
Default: es.bsc.compss.checkpoint.policies.

Checkpoint configuration parameter.
Default: Empty

Checkpoint folder.

Default: Mandatory parameter

Non-standard directories to search for librariesg
binding library)

Default: Working Directory

Path for the application classes / modules
Default: Working Directory

Path for the application class folder.
Default: /home/user

Additional folders or paths to add to they

Default: /home/user
Path to the script file where the application

COMPSs sources this script before running they

Default: Empty
Base directory to store COMPSs log files (a .

—COMPSs/ folder will be created inside this location)

--specific_log_dir=<path>
—files (no sandbox is created)

--uuid=<int>

--master_name=<string>

--master_port=<int>

Default: User home
Use a specific directory to store COMPSs log,

Warning: Overwrites --base_log_dir option
Default: Disabled

Preset an application UUID

Default: Automatic random generation

Hostname of the node to run the COMPSs master
Default:

Port to run the COMPSs master communications.
Only for NIO adaptor

(continues on next page)

5.3. Deployments

143

COMPSs Documentation, 3.0

(continued from previous page)

Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Eachg
—option separed by "," and without blank spaces (Notice the quotes)
Default:
--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Each,
—option separed by "," and without blank spaces (Notice the quotes)
Default: -Xms256m,-Xmx1024m,-Xmn100m
--cpu_affinity="<string>" Sets the CPU affinity for the workers

Supported options: disabled, automatic, dlb ory
—user defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--gpu_affinity="<string>" Sets the GPU affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_affinity="<string>" Sets the FPGA affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_reprogram="<string>" Specify the full command that needs to bey
—executed to reprogram the FPGA with the desired bitstream. The location must be an absolute,
—path.

Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of,
—different functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input

—application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile
—at the end of the execution
Default: Empty
--PyObject_serialize=<bool> Only for Python Binding. Enable the object
—serialization to string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent workery
—in ¢ (true/false).
Default: false
--enable_external _adaptation=<bool> Enable external adaptation. This option will
—disable the Resource Optimizer.
Default: false

--gen_coredump Enable master coredump generation
Default: false
--keep_workingdir Do not remove the worker working directory aftery

—the execution
Default: false
--python_interpreter=<string> Python interpreter to use (python/python3).
Default: python3 Version:
--python_propagate_virtual_environment=<bool> Propagate the master virtual environment,,
—to the workers (true/false).
Default: true
--python_mpi_worker=<bool> Use MPI to run the python worker instead of,
—multiprocessing. (true/false).
Default: false

(continues on next page)

144 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

(continued from previous page)

--python_memory_profile Generate a memory profile of the master.
Default: false
--python_worker_cache=<string> Python worker cache (true/size/false).

Only for NIO without mpi worker and python >= 3.8.
Default: false

--python_cache_profiler=<bool> Python cache profiler (true/false).
Only for NIO without mpi worker and python >= 3.8.
Default:

--wall_clock_limit=<int> Maximum duration of the application (in seconds).
Default: O

--shutdown_in_node_failure=<bool> Stop the whole execution in case of Node Failure.
Default: false

--provenance, -p Generate COMPSs workflow provenance data in RO-

—Crate format from YAML file. Automatically activates -graph and -output_profile.
Default: false

* Application name:
For Java applications: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

* Application arguments:
Command line arguments to pass to the application. Can be empty.

Warning: The cpu_affinity feature is not available in macOS distributions. Then, for all macOS executions
the flag --cpu_affinity=disabled must be specified, no matter if they are Java, Python or C/C+-+.

Running a COMPSs application

Before running COMPSs applications the application files must be in the CLASSPATH. Thus, when launching
a COMPSs application, users can manually pre-set the CLASSPATH environment variable or can add the
--classpath option to the runcompss command.

The next three sections provide specific information for launching COMPSs applications developed in different
code languages (Java, Python and C/C++). For clarity purposes, we will use the Simple application (developed
in Java, Python and C++) available in the COMPSs Virtual Machine or at https://compss.bsc.es/projects/bar
webpage. This application takes an integer as input parameter and increases it by one unit using a task. For
further details about the codes please refer to Sample Applications.

Tip: For further information about applications scheduling refer to Schedulers.

Running Java applications

A Java COMPSs application can be launched through the following command:

compss@bsc:~$ cd tutorial_apps/java/simple/jar/
compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple <initial_number>

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple 1
[INFO] Using default execution type: compss
[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/

LU .U\ato dcfc.u.lt LU C\/t Allll H
PE¥J 7 -P+¥J : (continues on next page)

5.3. Deployments 145

https://compss.bsc.es/projects/bar

COMPSs Documentation, 3.0

(continued from previous page)

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml
[INFO] Using default language: java

WARNING: COMPSs Properties file is null. Setting default values
[(1066) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

Final counter value is 2

[(4740) API] - Execution Finished

In this first execution we use the default value of the --classpath option to automatically add the jar file to the
classpath (by executing runcompss in the directory which contains the jar file). However, we can explicitly do this
by exporting the CLASSPATH variable or by providing the --classpath value. Next, we provide two more
ways to perform the same execution:

compss@bsc:~$ export CLASSPATH=$CLASSPATH:/home/compss/tutorial_apps/java/simple/jar/simple.
—jar
compss@bsc:~$ runcompss simple.Simple <initial_number>

compss@bsc:~$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar \
simple.Simple <initial_number>

Running Python applications

To launch a COMPSs Python application users have to provide the --lang=python option to the runcompss
command. If the extension of the main file is a regular Python extension (.py or .pyc) the runcompss command
can also infer the application language without specifying the lang flag.

compss@bsc:~$ cd tutorial_apps/python/simple/
compss@bsc:~/tutorial_apps/python/simple$ runcompss --lang=python ./simple.py <initial_number>

compss@bsc:~/tutorial_apps/python/simple$ runcompss simple.py 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Inferred PYTHON language

WARNING: COMPSs Properties file is null. Setting default values
[(616) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

Final counter value is 2

[(4297) API] - Execution Finished

146 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

Attention: Executing without debug (e.g. default log level or --log_level=off) uses -O2 compiled sources,
disabling asserts and __debug__.

Alternatively, it is possible to execute the a COMPSs Python application using pycompss as module:

compss@bsc:~$ python -m pycompss <runcompss_flags> <application> <application_parameters>

Consequently, the previous example could also be run as follows:

compss@bsc:~$ cd tutorial_apps/python/simple/
compss@bsc:~/tutorial_apps/python/simple$ python -m pycompss simple.py <initial_number>

If the -m pycompss is not set, the application will be run ignoring all PyCOMPSs imports, decorators and API
calls, that is, sequentially.

In order to run a COMPSs Python application with a different interpreter, the runcompss command provides a
specific flag:

compss@bsc:~$ cd tutorial_apps/python/simple/
compss@bsc:~/tutorial_apps/python/simple$ runcompss --python_interpreter=python3 ./simple.py
—<initial_number>

However, when using the pycompss module, it is inferred from the python used in the call:

compss@bsc:~$ cd tutorial_apps/python/simple/
compss@bsc:~/tutorial_apps/python/simple$ python3 -m pycompss simple.py <initial_number>

Finally, both runcompss and pycompss module provide a particular flag for virtual environment propagation
(--python_propagate_virtual_environment=<bool>). This, flag is intended to activate the current virtual en-
vironment in the worker nodes when set to true.

Specific flags

Some of the runcompss flags are only for PyCOMPSs application execution:

--pythonpath=<path> Additional folders or paths to add to the PYTHONPATH Default:
/home /user

--PyObject serialize=<bool> Only for Python Binding. Enable the object serialization to
string when possible (true/false). Default: false

--python_interpreter=<string> Python interpreter to use (python/python2/python3). De-
fault: “python” version

--python propagate virtual environment—=<true> Propagate the master virtual environ-
ment to the workers (true/false). Default: true

--python mpi worker=<false> Use MPI to run the python worker instead of multiprocessing.
(true/false). Default: false

--python memory profile Generate a memory profile of the master. Default: false
See: Memory Profiling

--python worker cache=<string> Python worker cache (true/true:ize/false). Only for NIO
without mpi worker and python >= 3.8. Default: false

See: Worker cache

--python_cache profiler=<bool> Python cache profiler (true/false). Only for NIO without
mpi worker and python >= 3.8. Default: false

See: Worker cache profiling

5.3. Deployments 147

COMPSs Documentation, 3.0

Warning: For macOS systems, the flag --python_propagate_virtual_environment must be set to true
to ensure the same Python version is used both in master and worker parts of the application (the application
will crash otherwise). We recommend to use pyenv to manage the macOS installed Python versions. Also, be
careful with Xcode updates, since they can modify the Python system version.

Warning: The PyCOMPSs current working directory must be passed with the --pythonpath flag to ensure
a correct execution in macOS environments. The Python’s site-packages directory must be provided as
well. An example of such a flag including both options would be: --pythonpath=$(pwd) : /Users/user_name/
.pyenv/versions/3.8.9/1ib/python3.8/site-packages

Worker cache

The --python_worker_cache is used to enable a cache between processes on each worker node. More specifically,
this flag enables a shared memory space between the worker processes, so that they can share objects between
processess in order to leverage the deserialization overhead.

The possible values are:

--python_worker_cache=false Disable the cache. This is the default value.
--python_worker_cache=true Enable the cache. The default cache size is 25% of the worker node memory.
--python_worker_cache=true:<SIZE> Enable the cache with specific cache size (in bytes).

During execution, each worker will try to store automatically the parameters and return objects, so that next tasks
can make use of them without needing to deserialize from file.

Important: The supported objects to be stored in the cache is limited to: python primitives (int, float,
bool, str (less than 10 Mb), bytes (less than 10 Mb) and None), lists (composed by python primitives), tuples
(composed by python primitives) and Numpy ndarrays.

It is important to take into account that storing the objects in cache has some non negligible overhead that can
be representative, while getting objects from cache shows to be more efficient than deserialization. Consequently,
the applications that most benefit from the cache are the ones that reuse many times the same objects.

Avoiding to store an object into the cache is possible by setting Cache to False into the @task decorator for the
parameter. For example, Code 116 shows how to avoid caching the value parameter.

Code 116: Avoid parameter caching

from pycompss.api.task import task
from pycompss.api.parameter import *

Otask(value={Cache: False})
def mytask(value):

Task return objects are also automatically stored into cache. To avoid caching return objects it is necessary to set
cache_returns=False into the @task decorator, as Code 117 shows.

Code 117: Avoid return caching

from pycompss.api.task import task

Otask(returns=1, cache_returns=False)
def mytask():
return list(range(10))

148 Chapter 5. Execution Environments

https://github.com/pyenv/pyenv

COMPSs Documentation, 3.0

Worker cache profiling

In order to use the cache profiler, you need to add the following flag:

--python_cache_profiler=true Additionally, you also need to activate the cache with --python_worker_-
cache=true.

When using the cache profiler, the cache parameter in @task decorator is going to be ignored and all elements that
can be stored in the cache will be stored.

The cache profiling file will be located in the workers’ folder within the log folder. In this file, you will find
a summary showing for each function and parameter (including the return of the function), how many times
has been the parameter been added to the cache (PUT), and how many times has been this parameter been
deserialized from the cache (GET). Furthermore, there is also a list (USED IN), that shows in which parameter
of which function the added parameter has been used.

Additional features
Concurrent serialization

It is possible to perform concurrent serialization of the objects in the master when using Python 3. To this end,
just export the COMPSS_THREADED_SERIALIZATION environment variable with any value:

compss@bsc:~$ export COMPSS_THREADED_SERTALIZATION=1

Caution: Please, make sure that the COMPSS_THREADED_SERIALIZATION environment variable is not in the
environment (env) to avoid the concurrent serialization of the objects in the master.

Tip: This feature can also be used within supercomputers in the same way.

Running C/C—++ applications

To launch a COMPSs C/C++ application users have to compile the C/C++ application by means of the compss_-
build_app command. For further information please refer to C/C++ Binding. Once complied, the --lang=c
option must be provided to the runcompss command. If the main file is a C/C++ binary the runcompss command
can also infer the application language without specifying the lang flag.

compss@bsc:~$ cd tutorial_apps/c/simple/
compss@bsc:~/tutorial_apps/c/simple$ runcompss --lang=c simple <initial_number>

compss@bsc:~/tutorial_apps/c/simple$ runcompss ~/tutorial_apps/c/simple/master/simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Inferred C/C++ language

JVM_OPTIONS_FILE: /tmp/tmp.ItT1tQfKgP
COMPSS_HOME: /opt/COMPSs

(continues on next page)

5.3. Deployments 149

COMPSs Documentation, 3.0

(continued from previous page)

Args: 1

WARNING: COMPSs Properties file is null. Setting default values

[(650) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

[BINDING] - Q@compss_wait_on - Entry.filename: counter

[BINDING] - Qcompss_wait_on - Runtime filename: dilv2_1497432831496.IT
Final counter value is 2

[(4222) API] - Execution Finished

Walltime

The runcompss command provides the --wall_clock_limit for the users to specify the maximum execution time
for the application (in seconds). If the time is reached, the execution is stopped.

Tip: This flag enables to stop the execution of an application in a contolled way if the execution is taking more
than expected.

Additional configurations

The COMPSs runtime has two configuration files: resources.xml and project.xml . These files contain infor-
mation about the execution environment and are completely independent from the application.

For each execution users can load the default configuration files or specify their custom configurations by us-
ing, respectively, the --resources=<absolute_path_to_resources.xml> and the --project=<absolute_path_-
to_project.xml> in the runcompss command. The default files are located in the /opt/COMPSs/Runtime/
configuration/xml/ path. Users can manually edit these files or can use the Eclipse IDE tool developed for
COMPSs.

For further details please check the Configuration Files.

Results and logs
Results

When executing a COMPSs application we consider different type of results:

e Application Output: Output generated by the application.
e Application Files: Files used or generated by the application.
e Tasks Output: Output generated by the tasks invoked from the application.

Regarding the application output, COMPSs will preserve the application output but will add some pre and post
output to indicate the COMPSs Runtime state. Figure 8 shows the standard output generated by the execution
of the Simple Java application. The green box highlights the application stdout while the rest of the output is
produced by COMPSs.

Regarding the application files, COMPSs does not modify any of them and thus, the results obtained by executing
the application with COMPSs are the same than the ones generated by the sequential execution of the application.

Regarding the tasks output, COMPSs introduces some modifications due to the fact that tasks can be executed in
remote machines. After the execution, COMPSs stores the stdout and the stderr of each job (a task execution) in-
side the ** /home/$USER/.COMPSs/$APPNAME/$EXEC NUMBER/jobs/" " directory of the main
application node.

150 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/resources/default_resources.xml

Executing simple.Simple

WARNING: IT Properties file is null. Setting default values
[(1646) API] - Starting COMPSs Runtime

Tnitial counter value is 1

Final counter value is 2

[(4107) API] - Execution Finished

Figure 8: Output generated by the execution of the Simple Java application with COMPSs

Figure 9 and Figure 10 show an example of the results obtained from the execution of the Hello Java application.
While Figure 9 provides the output of the sequential execution of the application (without COMPSs), Figure 10
provides the output of the equivalent COMPSs execution. Please note that the sequential execution produces the
Hello World! (from a task) message in the stdout while the COMPSs execution stores the message inside the
job1l_NEW.out file.

compssf@bsc:~/workspace_java/hello/fjar$ java -cp hello.jar hello.Hello
Hello World! (from main application)
Hello World! (from a task)

Figure 9: Sequential execution of the Hello java application

compss@bsc:~/tutorial_apps/java/hello/jarS runcompss -d hello.Hello
INFO] Using default execution type: compss
INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/projects/default_project.xml
INFO] Using default location for resources file: fopt/COMPSs/Runtime/configuration/xml/resources/default_resources.xml

Executing hello.Hello

WARNING: IT Properties file is null. Setting default values
API] - Deploying COMPSs Runtime
- Starting COMPSs Runtime
Initializing components
- _Readv to process tasks
Hello World! (from main application)
L(1203) API | Creating task from method sayHello in hello.HelloImpl
API] There is @ parameter
API] No more tasks for app 1
API] Getting Result Files 1

API] Stop IT reached
API] Stopping AP...
API] Stopping TD...
API] Stopping Comm...
API] Runtime stopped
Execution Finished

compss@bsc:~/tutorial_apps/java/hello/jar$ more ~/.COMPSs/hello.Hello_81/jobs/jobl_ NEW.out
[JAVA EXECUTOR] executeTask - Begin task execution
WORKER - Parameters of execution:
* Method type: METHOD
* Method definition: [DECLARING CLASS=hello.HelloImpl, METHOD NAME=sayHello]
* Parameter types:
* Parameter wvalues:
Hello World! (from a task)
LJAVA EXECUTOR| executeTask - End task execution

Figure 10: COMPSs execution of the Hello java application

5.3. Deployments 151

COMPSs Documentation, 3.0

Logs

COMPSs includes three log levels for running applications but users can modify them or add more levels by
editing the logger files under the /opt/COMPSs/Runtime/configuration /log/ folder. Any of these log levels can
be selected by adding the --log_level=<debug | info | off> flag to the runcompss command. The default
value is off.

The logs generated by the NUM_EXEC execution of the application APP by the user USER are stored under /home/
$USER/ . COMPSs/$APP/$EXEC_NUMBER/ folder (from this point on: base log folder). The EXEC_NUMBER execution
number is automatically used by COMPSs to prevent mixing the logs of data of different executions.

When running COMPSs with log level off only the errors are reported. This means that the base log folder
will contain two empty files (runtime.log and resources.log) and one empty folder (jobs). If somehow the
application has failed, the runtime.log and/or the resources.log will not be empty and a new file per failed job
will appear inside the jobs folder to store the stdout and the stderr. Figure 11 shows the logs generated by the
execution of the Simple java application (without errors) in off mode.

sources. log
runtime.log

Figure 11: Structure of the logs folder for the Simple java application in off mode

When running COMPSs with log level info the base log folder will contain two files (runtime.log and resources.
log) and one folder (jobs). The runtime.log file contains the execution information retrieved from the master
resource, including the file transfers and the job submission details. The resources.log file contains information
about the available resources such as the number of processors of each resource (slots), the information about
running or pending tasks in the resource queue and the created and destroyed resources. The jobs folder will be
empty unless there has been a failed job. In this case it will store, for each failed job, one file for the stdout
and another for the stderr. As an example, Figure 12 shows the logs generated by the same execution than the
previous case but with info mode.

resources. log

runtime.log

Figure 12: Structure of the logs folder for the Simple java application in info mode

The runtime.log and resources.log are quite large files, thus they should be only checked by advanced users.
For an easier interpretation of these files the COMPSs Framework includes a monitor tool. For further information
about the COMPSs Monitor please check Monitor.

Figure 13 and Figure 14 provide the content of these two files generated by the execution of the Simple java
application.

Running COMPSs with log level debug generates the same files as the info log level but with more detailed
information. Additionally, the jobs folder contains two files per submitted job; one for the stdout and another
for the stderr. In the other hand, the COMPSs Runtime state is printed out on the stdout. Figure 15 shows the
logs generated by the same execution than the previous cases but with debug mode.

The runtime.log and the resources.log files generated in this mode can be extremely large. Consequently, the
users should take care of their quota and manually erase these files if needed.

When running Python applications a pycompss.log file is written inside the base log folder containing debug
information about the specific calls to PyCOMPSs.

Furthermore, when running runcompss with additional flags (such as monitoring or tracing) additional folders will
appear inside the base log folder. The meaning of the files inside these folders is explained in Tools.

152 Chapter 5. Execution Environments

COMPSs Documentation,

3.0

compss@bsc:~/.COMPSs/simple.Simple_02$ cat runtime.log

[(732)(2015-088-20
[(738)(2015-088-20

[(742)(2015-08-20

[(742)(2015-88-20
[(748)(2015-88-20
[(753)(2015-88-20
created
[(753)(2015-88-20
[(787)(2015-088-20
[(791)(2015-88-20
[(1479)(2015-88-20
[(1892)(2015-88-20
[(1893)(2015-88-20
[(1894)(2015-88-20
[(1894)(2015-88-20
[(1895)(2015-88-20
[(1899)(2015-88-20
[(1944)(2015-88-20
[(1945)(2015-88-20

[(1946)(2015-08-20
[(1955)(20815-08-28

16:34:30,731)
16 8,737)
0,741)
0,741)
:34:30,747)
6:34:30,752)

:134:30,752)
0,786)
8,790)

:31,478)
:31,891)
:31,892)
:31,893)
:31,893)
:31,894)
:31,898)
:131,943)
:31,944)
:131,945)
:31,954)

TaskScheduler]
TaskScheduler]
JobManager]
TaskDispatcher]
TaskAnalyser]
TaskScheduler]

DataInfoProvider]
TaskAnalyser]
TaskScheduler]
Communication]
TaskScheduler]
TaskScheduler]
JobManager]
JobManager]
BLLLELEGET |
Communication]
JobManager]
TaskProcessor]
TaskProcessor]
TaskProcessor]

@<init>
@<init>
@<init>
@=<init>
@<init>
@esourcesCreated

@<init>

@processTask

@scheduleTask
@etWorkerIsReady
@esourcesCreated
@asksForResource
@processJob
@processJob
@processJob
@submit
@completedlob
@notifyTaskEnd
@waitForTask
@noMoreTasks

finished
finished
finished

Initialization
Initialization
Initialization
Initialization finished
Initialization finished
Resource http://bscgrides.bsc.es:20390/hmmerobj/hmmerobj?wsdl

Initialization finished
New method task(increment), ID = 1
Blocked: Task(1, increment)
Notifying that worker is ready localhost
Resource localhost created
Available Resource: localhost. Task:
New Job 1 (Task: 1)
* Method name: increment
* Target host: localhost
Submit NIOJob with ID 1
Received a notification for job 1 with state OK
Notification received for task 1 with end status FINISHED
End of waited task for data 1
All tasks finished

1, score: O

AccessProcessor shutdown
Shutting down localhost:43001

[(1962)(2015-08-20
[(1965)(2015-08-20

:31,961)
:31,964)

TaskProcessor]
Communication]

@run
@stop

Figure 13: runtime.log generated by the execution of the Simple java application

compss(@bsc:~/.COMPSs /simple.Simple_82% cat resources.log

TIMESTAMP = 1440081270727

INFO_MSG = [New resource available in the pool. Name =

TIMESTAMP = 1440081270752

LOAD_INFO = [

CORE_INFO = [

COREID = @
NO_RESQURCE =
TO_RESCHEDULE
ORDINARY = @
MIN = 100
MEAN = 100
MAX = 100

http://bscgrid®5.bsc.es:26390/hmmerobj/hmmerobj?wsdl]

[¢]
=0

1

TIMESTAMP =
INFO_MSG =
TIMESTAMP =
INFO_MSG =

1440081271891
[New resource available in the pool. Name =
1440081271962
[Stopping all workers]
= 1440081271962
=0
CORE_INFO = [
COREID = @
NO_RESOURCE = ©
TO_RESCHEDULE
ORDINARY = 0
MIN = 56
MEAN 6
MAX

localhost]

Figure 14: resources.log generated by the execution of the Simple java application

4.0K] simple.S
4.0K] j
[©] jobl_NEW.err
jobl_NEW.out
resources. log
runtime.log
tmpFiles

[380]

[612]
[7eK]
[4.8K]

Figure 15: Structure of the logs folder for the Simple java application in debug mode

5.3. Deployments

153

COMPSs Documentation, 3.0

5.3.1.2 Supercomputers

This section is intended to walk you through the COMPSs usage in Supercomputers.

Executing COMPSs applications

Loading the COMPSs Environment

Depending on the supercomputer installation, COMPSs can be loaded by an environment script, or an Environment
Module. The following paragraphs provide the details about how to load the COMPSs environment in the different
situations.

COMPSs Environment Script

After a successful installation from the supercomputers package, users can find the compssenv script in the folder
where COMPSs was installed. This script can be used to load the COMPSs environment in the system as indicated
below.

$ source <COMPSS_INSTALLATION_DIR>/compssenv

COMPSs Environment Module

In BSC supercomputers, COMPSs is configured as an Environment Module. As shown in next Figure, users can
type the module available COMPSs command to list the supported COMPSs modules in the supercomputer. The
users can also execute the module load COMPSs/<version> command to load an specific COMPSs module.

$ module available COMPSs

—————————— /apps/modules/modulefiles/tools ----------
COMPSs/1.
COMPSs/1.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.10

COMPSs/3.0
COMPSs/release(default)
COMPSs/trunk

© 00 N O d WN - O P W

$ module load COMPSs/release

load java/1.8.0u66 (PATH, MANPATH, JAVA_HOME, JAVA_ROOT, JAVA_BINDIR,
SDK_HOME, JDK_HOME, JRE_HOME)

load MKL/11.0.1 (LD_LIBRARY_PATH)

load PYTHON/3.7.4 (PATH, MANPATH, LD_LIBRARY_PATH, C_INCLUDE_PATH)

load COMPSs/release (PATH, MANPATH, COMPSS_HOME)

The following command can be run to check if the correct COMPSs version has been loaded:

154 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

$ enqueue_compss --version
COMPSs version <version>

Configuration Notes

The COMPSs module contains all the COMPSs dependencies, including Java, Python and MKL. Modifying any
of these dependencies can cause execution failures and thus, we do not recomend to change them. Before running
any COMPSs job please check your environment and, if needed, comment out any line inside the .bashrc file that
loads custom COMPSs, Java, Python and/or MKL modules.

The COMPSs environment needs to be loaded in all the nodes that will run COMPSs jobs. Some queue system
(such as Slurm) already forward the environment in the allocated nodes. If it is not the case, the module load or
the compssenv script must be included in your .bashrc file. To do so, please run the following command with
the corresponding COMPSs version:

$ cat "module load COMPSs/release" >> ~/.bashrc

Log out and back in again to check that the file has been correctly edited. The next listing shows an example of
the output generated by well loaded COMPSs installation.

$ exit

$ ssh USER@SC

load java/1.8.0u66 (PATH, MANPATH, JAVA_HOME, JAVA_ROOT, JAVA_BINDIR,
SDK_HOME, JDK_HOME, JRE_HOME)

load MKL/11.0.1 (LD_LIBRARY_PATH)

load PYTHON/2.7.3 (PATH, MANPATH, LD_LIBRARY_PATH, C_INCLUDE_PATH)

load COMPSs/release (PATH, MANPATH, COMPSS_HOME)

USERGSC$ enqueue_compss --version
COMPSs version <version>

Important: Please remember that PyCOMPSs uses Python 2.7 by default. In order to use Python 3, the Python
2.7 module must be unloaded after loading COMPSs module, and then load the Python 3 module.

COMPSs Job submission

COMPSs jobs can be easily submited by running the enqueue compss command. This command allows to
configure any runcompss (Runcompss command) option and some particular queue options such as the queue
system, the number of nodes, the wallclock time, the master working directory, the workers working directory and
number of tasks per node.

Next, we provide detailed information about the enqueue_compss command:

$ enqueue_compss -h

Usage: /apps/COMPSs/3.0/Runtime/scripts/user/enqueue_compss [queue_system_options] [COMPSs_
—options] application_name application_arguments

* Options:
General:
--help, -h Print this help message
--heterogeneous Indicates submission is going to be heterogeneous

Default: Disabled
Queue system configuration:

(continues on next page)

5.3. Deployments 155

COMPSs Documentation, 3.0

(continued from previous page)

--sc_cfg=<name>
—exist inside queues/cfgs/

Submission configuration:
General submision arguments:
--exec_time=<minutes>
—minutes)

--job_name=<name>

--queue=<name>
—on the queue system.

--reservation=<name>

--env_script=<path/to/script>
—application.

--extra_submit_flag=<flag>
—default command flags.

--forward_cpus_per_node=<true|false>

—be forwarded to the worker process.
—cpus_per_node in a worker node and
—node.

--job_dependency=<jobID>
—has ended.

--forward_time_limit=<true|false>
—runtime.
--storage_home=<string>
—implementation.
—Vvariable.
--storage_props=<string>
Agents deployment arguments:
--agents=<string>
—values: plain|tree
--agents
—classic Master-Worker deployment.
Homogeneous submission arguments:

--num_nodes=<int>

--num_switches=<int>

SuperComputer configuration file to use. Must

Default: default

Expected execution time of the application (in

Default: 10

Job name

Default: COMPSs

Queue/partition name to submit the job. Depends,

Default: default

Reservation to use when submitting the job.
Default: disabled

Script to source the required environment for they

Default: Empty
Flag to pass queue system flags not supported by,

Spaces must be added as '#'
Default: Empty
Flag to indicate if number to cpus per node must,

The number of forwarded cpus will be equal to the,
equal to the worker_in_master_cpus in a mastery

Default: false
Postpone job execution until the job dependency

Default: None
Forward the queue system time limit to they,

It will stop the application in a controlled way.
Default: true
Root installation dir of the storage,

Can be defined with the STORAGE_HOME environment
Default: null

Absolute path of the storage properties file
Mandatory if storage_home is defined

Hierarchy of agents for the deployment. Accepted,

Default: tree
Deploys the runtime as agents instead of they

Default: disabled

Number of nodes to use
Default: 2
Maximum number of different switches. Select O,

—for mo restrictions.

(continues on next page)

156

Chapter 5. Execution Environments

COMPSs Documentation, 3.0

(continued from previous page)

Heterogeneous submission arguments:
--type_cfg=<file_location>
—node type requests

--master=<master_node_type>
—type_cfg flag)
--workers=type_X:nodes,type_Y:nodes
—workers
—type_cfg flag)

Launch configuration:
--cpus_per_node=<int>
--gpus_per_node=<int>
--fpgas_per_node=<int>

--io_executors=<int>

--fpga_reprogram="<string>
—executed to reprogram the FPGA with

—absolute path.

--max_tasks_per_node=<int>
—node

--node_memory=<MB>
--node_storage_bandwidth=<MB>

--network=<name>
—ethernet | infiniband | data.

--prolog="<string>"
—the quotes)
—rather than spaces.
—than one prolog action

--epilog="<string>"

Maximum nodes per switch: 18
Only available for at least 4 nodes.
Default: O

Location of the file with the descriptions of,

File should follow the following format:
type_X(O){

cpus_per_node=24

node_memory=96

}
type_ YO {

b
Node type for the master
(Node type descriptions are provided in the --

Node type and number of nodes per type for the,

(Node type descriptions are provided in the --

Available CPU computing units on each node
Default: 48

Available GPU computing units on each node
Default: O

Available FPGA computing units on each node
Default: O

Number of IO executors on each node
Default: O

Specify the full command that needs to be,

the desired bitstream. The location must be ang

Default:
Maximum number of simultaneous tasks running on a

Default: -1

Maximum node memory: disabled | <int> (MB)
Default: disabled

Maximum node storage bandwidth: <int> (MB)
Default: 450

Communication network for transfers: default |,
Default: infiniband

Task to execute before launching COMPSs (Notice,
If the task has arguments split them by ",",

This argument can appear multiple times for morej

Default: Empty
Task to execute after executing the COMPSsy

—appiicationm (Notice the quotes)

(continues on next page)

5.3. Deployments

157

COMPSs Documentation, 3.0

(continued from previous page)

—rather than spaces.

—than one epilog action
--master_working_dir=<path>
--worker_working_dir=<name | path>

--worker_in_master_cpus=<int>

If the task has arguments split them by ",",

This argument can appear multiple times for morej
Default: Empty

Working directory of the application

Default:

Worker directory. Use: local_disk | shared_disk |

Default: local_disk

Maximum number of CPU computing units that the

—master node can run as worker. Cannot exceed cpus_per_node.

--worker_in_master_memory=<int> MB
—worker. Cannot exceed the node_memory.

--worker_port_range=<min>,<max>
—side

--jvm_worker_in_master_opts="<string>"
—the Master Node.

—spaces (Notice the quotes)

--container_image=<path>
—engine image

--container_compss_path=<path>
—image

--container_opts="<string>"

--elasticity=<max_extra_nodes>
—nodes (ONLY AVAILABLE FORM SLURM CLUSTERS

--automatic_scaling=<bool>
— (for elasticity)

--jupyter_notebook=<path>,

—jupyter notebook from the specified path.
--jupyter_notebook
--ipython

—ipython.

Runcompss configuration:

Tools enablers:
--graph=<bool>, --graph, -g

Default: 24
Maximum memory in master node assigned to the,

Mandatory if worker_in_master_cpus is specified.
Default: 50000
Port range used by the NIO adaptor at the worker,

Default: 43001,43005
Extra options for the JVM of the COMPSs Worker in

Each option separed by "," and without blank

Default:
Runs the application by means of a containery

Default: Empty
Path where compss is installed in the container,

Default: /opt/COMPSs

Options to pass to the container engine

Default: empty

Activate elasticity specifiying the maximum extrag
WITH NIO ADAPTOR)

Default: O

Enable or disable the runtime automatic scalingy,

Default: true
Swap the COMPSs master initialization withy

Default: false
Swap the COMPSs master initialization withy

Default: empty

Generation of the complete graph (true/false)
When no value is provided it is set to true
Default: false

(continues on next page)

158

Chapter 5. Execution Environments

COMPSs Documentation, 3.0

(continued from previous page)

--tracing=<bool>, --tracing, -t

--monitoring=<int>, --monitoring, -m

--external_debugger=<int>,
--external_debugger
—specified port (or 9999 if empty)

--jmx_port=<int>

Runtime configuration options:
--task_execution=<compss|storage>

--storage_impl=<string>

Set generation of traces.

Default: false

Period between monitoring samples (milliseconds)
When no value is provided it is set to 2000
Default: O

Enables external debugger connection on they
Default: false

Enable JVM profiling on specified port

Task execution under COMPSs or Storage.
Default: compss
Path to an storage implementation. Shortcut toy

—setting pypath and classpath. See Runtime/storage in your installation folder.

--storage_conf=<path>
--project=<path>

—xml/projects/default_project.xml
--resources=<path>

—xml/resources/default_resources.xml
--lang=<name>

--summary
—the application execution

--log_level=<level>, --debug, -d
—~trace

—disabling asserts and __debug__

Advanced options:
--extrae_config_file=<path>

—sshared disk between all COMPSs workers.

—tracing/extrae_basic.xml

--extrae_config_file_python=<path>

Path to the storage configuration file

Default: null

Path to the project XML file

Default: /apps/COMPSs/3.0//Runtime/configuration/

Path to the resources XML file
Default: /apps/COMPSs/3.0//Runtime/configuration/

Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java

Displays a task execution summary at the end of,

Default: false
Set the debug level: off | info | api | debug |,

Warning: O0ff level compiles with -02 optiony

Default: off

Sets a custom extrae config file. Must be in a,
Default: /opt/COMPSs//Runtime/configuration/xml/

Sets a custom extrae config file for python. Musty,

—be in a shared disk between all COMPSs workers.

--trace_label=<string>

—used in the case of tracing is activated.

--tracing_task_dependencies=<bool>

—dependencies (true/false)

--generate_trace=<bool>

Default: null
Add a label in the generated trace file. Only

Default: None
Adds communication lines for the task

Default: false
Converts the events register into a trace file.j

—0Only used in the case of activated tracing.

--delete_trace_packages=<bool>
—the run.

—trace is not generated.

Default: false
If true, deletes the tracing packages created byy,

Default: false. Automatically, disabled if the(

(continues on next page)

5.3. Deployments

159

COMPSs Documentation, 3.0

(continued from previous page)

--custom_threads=<bool>

Threads in the trace file are re-ordered and

—customized to indicate the function of the thread.

—trace file generated.

--comm=<ClassName>
—communications

--conn=<className>
—the cloud
—DefaultSSHConnector
—DefaultNoSSHConnector
—DefaultSSHConnector
--streaming=<type>
--streaming_master_name=<str>
--streaming_master_port=<int>

--scheduler=<className>

—TaskScheduler
—fifo.FifoTS
—FifoTS
—LifoTS

—locality.LocalityTS

—successors.constraintsfifo.ConstraintsFifoTS
<ssuccessors.constraintsfifo.ConstraintsFifoTS
—successors.fifolocality.FifoLocalityTS

—successors.fifolocality.FifoLocalityTS

—locality.LocalityTS
--scheduler_config_file=<path>
—configuration.

--checkpoint=<className>
—policy

Only used when the tracing is activated and a

Default: true
Class that implements the adaptor fory

Supported adaptors:
es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor

Default: es.bsc.compss.nio.master.NIOAdaptor

Class that implements the runtime connector forj

Supported connectors:
F—— es.bsc.compss.connectors.

L— es.bsc.compss.connectors.
Default: es.bsc.compss.connectors.
Enable the streaming mode for the given type.
Supported types: FILES, OBJECTS, PSCOS, ALL, NONE
Default: NONE
Use an specific streaming master node name.
Default: null
Use an specific port for the streaming master.
Default: null
Class that implements the Scheduler for COMPSs
Supported schedulers:
es.bsc.compss.components.impl.
es.bsc.compss.scheduler.orderstrict.
es.bsc.compss.scheduler.lookahead.fifo.
es.bsc.compss.scheduler.lookahead.lifo.
es.bsc.compss.scheduler.lookahead.
es.bsc.compss.scheduler.lookahead.

es.bsc.compss.scheduler.lookahead.mt.

es.bsc.compss.scheduler.lookahead.

T T T T TT

es.bsc.compss.scheduler.lookahead.mt.
Default: es.bsc.compss.scheduler.lookahead.
Path to the file which contains the scheduler,

Default: Empty
Class that implements the Checkpoint Management,,

Supported checkpoint policies:
es.bsc.compss.checkpoint.policies.

—CheckpointPolicyinstantiatedGroup

(continues on next page)

160

Chapter 5. Execution Environments

COMPSs Documentation, 3.0

(continued from previous page)

F—— es.bsc.compss.checkpoint.policies.
—CheckpointPolicyPeriodicTime

F—— es.bsc.compss.checkpoint.policies.
—CheckpointPolicyFinishedTasks

— es.bsc.compss.checkpoint.policies.

—NoCheckpoint
Default: es.bsc.compss.checkpoint.policies.
—NoCheckpoint
--checkpoint_params=<string> Checkpoint configuration parameter.
Default: Empty
--checkpoint_folder=<path> Checkpoint folder.
Default: Mandatory parameter
--library_path=<path> Non-standard directories to search for librariesj

—(e.g. Java JVM library, Python library, C binding library)
Default: Working Directory

--classpath=<path> Path for the application classes / modules
Default: Working Directory
--appdir=<path> Path for the application class folder.
Default: /home/bscXX/bscXXYYY
--pythonpath=<path> Additional folders or paths to add to the,
—PYTHONPATH

Default: /home/bscXX/bscXXYYY
--env_script=<path> Path to the script file where the application
—environment variables are defined.
COMPSs sources this script before running they
—application.
Default: Empty
--base_log_dir=<path> Base directory to store COMPSs log files (a .
—COMPSs/ folder will be created inside this location)
Default: User home
--specific_log_dir=<path> Use a specific directory to store COMPSs log,
—files (no sandbox is created)
Warning: Overwrites --base_log_dir option
Default: Disabled

--uuid=<int> Preset an application UUID
Default: Automatic random generation
--master_name=<string> Hostname of the node to run the COMPSs master
Default:
--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor
Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Eachy
—option separed by "," and without blank spaces (Notice the quotes)
Default:
--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Eachj
—option separed by "," and without blank spaces (Notice the quotes)
Default: -Xms256m,-Xmx1024m,-Xmn100m
--cpu_affinity="<string>" Sets the CPU affinity for the workers

Supported options: disabled, automatic, dlb ory
—user defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--gpu_affinity="<string>" Sets the GPU affinity for the workers
Supported options: disabled, automatic, user|
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_affinity="<string>" Sets the FPGA affinity for the workers

(continues on next page)

5.3. Deployments 161

COMPSs Documentation, 3.0

(continued from previous page)

Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_reprogram="<string>" Specify the full command that needs to bey
—executed to reprogram the FPGA with the desired bitstream. The location must be an absolute,
—path.

Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of,
—different functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input

—application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile
—at the end of the execution
Default: Empty
--Py0Object_serialize=<bool> Only for Python Binding. Enable the object,
—serialization to string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent workery
—in ¢ (true/false).
Default: false
--enable_external _adaptation=<bool> Enable external adaptation. This option will
—disable the Resource Optimizer.
Default: false

--gen_coredump Enable master coredump generation
Default: false
--keep_workingdir Do not remove the worker working directory aftery

—the execution
Default: false
--python_interpreter=<string> Python interpreter to use (python/python3).
Default: python3 Version:
--python_propagate_virtual_environment=<bool> Propagate the master virtual environment,,
—to the workers (true/false).
Default: true
--python_mpi_worker=<bool> Use MPI to run the python worker instead of,
—multiprocessing. (true/false).
Default: false

--python_memory_profile Generate a memory profile of the master.
Default: false
--python_worker_cache=<string> Python worker cache (true/size/false).

Only for NIO without mpi worker and python >= 3.8.
Default: false

--python_cache_profiler=<bool> Python cache profiler (true/false).
Only for NIO without mpi worker and python >= 3.8.
Default:

--wall_clock_limit=<int> Maximum duration of the application (in seconds).
Default: O

--shutdown_in_node_failure=<bool> Stop the whole execution in case of Node Failure.
Default: false

--provenance, -p Generate COMPSs workflow provenance data in RO-

—~Crate format from YAML file. Automatically activates -graph and -output_profile.
Default: false

(continues on next page)

162 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

(continued from previous page)

* Application name:
For Java applications: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

* Application arguments:
Command line arguments to pass to the application. Can be empty.

Tip: For further information about applications scheduling refer to Schedulers.

Attention: From COMPSs 2.8 version, the worker_working_dir has changed its built-in values to be more
generic. The current values are: local_disk which substitutes the former scratch value; and shared_disk
which replaces the gpfs value.

Caution: Supercomputers may have different partitions in shared disks (e.g. /gpfs/scratch, /gpfs/
projects and /gpfs/home).

Consequently, it is recommended to set the base_log_dir flag in the same partition as the worker_working_-
dir to avoid performance drop.

Walltime

As with the runcompss command, the enqueue_compss command also provides the --wall_clock_limit for the
users to specify the maximum execution time for the application (in seconds). If the time is reached, the execution
is stopped.

Do not confuse with --exec_time, since exec_time indicates the walltime for the queuing system, whilst wall_-
clock_limit is for COMPSs. Consequently, if the exec_time is reached, the queuing system will arise an exception
and the execution will be stopped suddenly (potentially causing loose of data). However, if the wall_clock_limit
is reached, the COMPSs runtime stops and grabs all data safely.

Tip: It is a good practice to define the --wall_clock_limit with less time than defined for --exec_time, so
that the COMPSs runtime can stop the execution safely and ensure that no data is lost.

PyCOMPSs within interactive jobs

PyCOMPSs can be used in interactive jobs through the use of ipython. To this end, the first thing is to request
an interactive job. For example, an interactive job with Slurm for one node with 48 cores (as in MareNostrum 4)
can be requested as follows:

$ salloc --qos=debug -N1 -n48

salloc: Pending job allocation 12189081

salloc: job 12189081 queued and waiting for resources
salloc: job 12189081 has been allocated resources
salloc: Granted job allocation 12189081

salloc: Waiting for resource configuration

salloc: Nodes s02r2b27 are ready for job

5.3. Deployments 163

COMPSs Documentation, 3.0

When the job starts running, the terminal directly opens within the given node.

Then, it is necessary to start the COMPSs infrastructure in the given nodes. To this end, the following command
will start one worker with 24 cores (default worker in master), and then launch the ipython interpreter:

$ launch_compss \
--sc_cfg=mn.cfg \
--master_node="$SLURMD_NODENAME" \

--worker_nodes="" \
--ipython \
--pythonpath=$ (pwd) \
"dummy"

Note that the launch_compss command requires the supercomputing configuration file, which in the MareNostrum
4 case is mn.cfg (more information about the supercomputer configuration can be found in Configuration Files).
In addition, requires to define which node is going to be the master, and which ones the workers (if none, takes
the default worker in master). Finally, the —ipython flag indicates that use ipython is expected.

When ipython is started, the COMPSs infrastructure is ready, and the user can start running interactive commands
considering the PyCOMPSs API for jupyter notebook (see Jupyter API calls).

MareNostrum 4
Basic queue commands

The MareNostrum supercomputer uses the SLURM (Simple Linux Utility for Resource Management) workload
manager. The basic commands to manage jobs are listed below:

e sbatch Submit a batch job to the SLURM system
e scancel Kill a running job
e squeue -u <username> See the status of jobs in the SLURM queue

For more extended information please check the SLURM: Quick start user guide at https://slurm.schedmd.com/
quickstart.html .

Tracking COMPSs jobs

When submitting a COMPSs job a temporal file will be created storing the job information. For example:

$ enqueue_compss \
--exec_time=15 \
--num_nodes=3 \
--cpus_per_node=16 \
--master_working_dir=. \
--worker_working_dir=shared_disk \
--lang=python \
--log_level=debug \
<APP> <APP_PARAMETERS>

SC Configuration: default.cfg
Queue: default
Reservation: disabled
Num Nodes: 3

Num Switches: 0

GPUs per node: 0

Job dependency: None

(continues on next page)

164 Chapter 5. Execution Environments

https://slurm.schedmd.com/quickstart.html
https://slurm.schedmd.com/quickstart.html

COMPSs Documentation, 3.0

(continued from previous page)

Exec-Time: 00:15
Storage Home: null
Storage Properties: null
Other:

--sc_cfg=default.cfg
--cpus_per_node=48
--master_working_dir=.
--worker_working_dir=shared_disk
--lang=python
--classpath=.
--library_path=.
--comm=es.bsc.compss.nio.master.NIOAdaptor
--tracing=false
--graph=false
--pythonpath=.
<APP> <APP_PARAMETERS>

Temp submit script is: /scratch/tmp/tmp.pBG5yfFxEo

$ cat /scratch/tmp/tmp.pBG5yfFxEo
#!/bin/bash

#

#SBATCH --job-name=COMPSs
#SBATCH --workdir=.
#SBATCH -o compss-%J.out
#SBATCH -e compss-%J.err
#SBATCH -N 3

#SBATCH -n 144

#SBATCH --exclusive
#SBATCH -t00:15:00

Caution: Since MN4 has different partitions in shared disk (gpfs): /gpfs/scratch, /gpfs/projects and /
gpfs/home, it is recommended to set the base_log_dir flag in the same partition as the worker_working_dir
to avoid performance drop.

In order to track the jobs state users can run the following command:

$ squeue
JOBID PARTITION NAME USER TIME_LEFT TIME_LIMIT START_TIME ST NODES CPUS NODELIST
474130 main COMPSs XX 0:15:00 0:15:00 N/A PD 3 144 -

The specific COMPSs logs are stored under the ~/.COMPSs/ folder; saved as a local runcompss execution. For
further details please check the Ezecuting COMPSs applications Section.

5.3. Deployments 165

COMPSs Documentation, 3.0

MinoTauro
Basic queue commands

The MinoTauro supercomputer uses the SLURM (Simple Linux Utility for Resource Management) workload man-
ager. The basic commands to manage jobs are listed below:

e sbatch Submit a batch job to the SLURM system
e scancel Kill a running job
e squeue -u <username> See the status of jobs in the SLURM queue

For more extended information please check the SLURM: Quick start user guide at https://slurm.schedmd.com/
quickstart.html .

Tracking COMPSs jobs

When submitting a COMPSs job a temporal file will be created storing the job information. For example:

$ enqueue_compss \
--exec_time=15 \
--num_nodes=3 \
--cpus_per_node=16 \
--master_working dir=. \
--worker_working_dir=shared_disk \
--lang=python \
--log_level=debug \
<APP> <APP_PARAMETERS>

SC Configuration: default.cfg
Queue: default
Reservation: disabled
Num Nodes: 3

Num Switches: 0

GPUs per node: 0

Job dependency: None
Exec-Time: 00:15
Storage Home: null
Storage Properties: null
Other:

--sc_cfg=default.cfg
--cpus_per_node=16
--master_working_dir=.
--worker_working_dir=shared_disk
--lang=python
--classpath=.
--library_path=.
--comm=es.bsc.compss.nio.master.NIOAdaptor
--tracing=false
--graph=false
--pythonpath=.
<APP> <APP_PARAMETERS>

Temp submit script is: /scratch/tmp/tmp.pBG5yfFxEo

$ cat /scratch/tmp/tmp.pBG5yfFxEo
#!/bin/bash
#

(continues on next page)

166 Chapter 5. Execution Environments

https://slurm.schedmd.com/quickstart.html
https://slurm.schedmd.com/quickstart.html

COMPSs Documentation, 3.0

(continued from previous page)

#SBATCH --job-name=COMPSs
#SBATCH --workdir=.
#SBATCH -o compss-%J.out
#SBATCH -e compss-#%J.err
#SBATCH -N 3

#SBATCH -n 48

#SBATCH --exclusive
#SBATCH -t00:15:00

In order to trac the jobs state users can run the following command:

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
XXXX projects COMPSs XX R 00:02 3 nvb[6-8]

The specific COMPSs logs are stored under the ~/.COMPSs/ folder; saved as a local runcompss execution. For
further details please check the Executing COMPSs applications Section.

Nord 3
Basic queue commands

The Nord3 supercomputer uses the LSF (Load Sharing Facility) workload manager. The basic commands to
manage jobs are listed below:

e bsub Submit a batch job to the LSF system

e bkill Kill a running job

e bjobs See the status of jobs in the LSF queue
e bqueues Information about LSF batch queues

For more extended information please check the IBM Platform LSF Command Reference at https://www.ibm.
com/support/knowledgecenter/en/SSETD4 9.1.2/1sf ke cmd ref.html .

Tracking COMPSs jobs

When submitting a COMPSs job a temporal file will be created storing the job information. For example:

$ enqueue_compss \
--exec_time=15 \
--num_nodes=3 \
--cpus_per_node=16 \
--master_working_dir=. \
--worker_working_dir=shared_disk \
--lang=python \
--log_level=debug \
<APP> <APP_PARAMETERS>

SC Configuration: default.cfg
Queue: default
Reservation: disabled
Num Nodes: 3

Num Switches: 0

GPUs per node: 0

(continues on next page)

5.3. Deployments 167

https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_kc_cmd_ref.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_kc_cmd_ref.html

COMPSs Documentation, 3.0

(continued from previous page)

Job dependency: None
Exec-Time: 00:15
Storage Home: null
Storage Properties: null
Other:

--sc_cfg=default.cfg
--cpus_per_node=16
--master_working_dir=.
--worker_working_dir=shared_disk
--lang=python
--classpath=.
--library_path=.
--comm=es.bsc.compss.nio.master.NIOAdaptor
--tracing=false
--graph=false
--pythonpath=.
<APP> <APP_PARAMETERS>

Temp submit script is: /scratch/tmp/tmp.pBG5yfFxEo

$ cat /scratch/tmp/tmp.pBG5yfFxEo
#!/bin/bash

#
#BSUB -J COMPSs
#BSUB -cwd .

#BSUB -oo0 compss-%J.out
#BSUB -eo compss-%J.err
#BSUB -n 3

#BSUB -R "span[ptile=1]"
#BSUB -W 00:15

In order to trac the jobs state users can run the following command:

$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
XXXX bscXX PEND XX logini XX COMPSs Month Day Hour

The specific COMPSs logs are stored under the ~/.COMPSs/ folder; saved as a local runcompss execution. For
further details please check the Executing COMPSs applications Section.

Enabling COMPSs Monitor
Configuration

As supercomputer nodes are connection restricted, the better way to enable the COMPSs Monitor is from the
users local machine. To do so please install the following packages:

e COMPSs Runtime
e COMPSs Monitor
e sshfs

For further details about the COMPSs packages installation and configuration please refer to Installation and
Administration Section. If you are not willing to install COMPSs in your local machine please consider to download
our Virtual Machine available at our webpage.

Once the packages have been installed and configured, users need to mount the sshfs directory as follows. The
SC_USER stands for your supercomputer’s user, the SC_ENDPOINT to the supercomputer’s public endpoint and the

168 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

TARGET_LOCAL_FOLDER to the local folder where you wish to deploy the supercomputer files):

compss@bsc:~$ scp $HOME/.ssh/id_rsa.pub ${SC_USER}@mnl.bsc.es:~/id_rsa_local.pub
compss@bsc:~$ ssh SC_USERQ@SC_ENDPOINT \
"cat “/id_rsa_local.pub >> 7/.ssh/authorized_keys; \
rm ~/id_rsa_local.pub"
compss@bsc:~$ mkdir -p TARGET_LOCAL_FOLDER/.COMPSs
compss@bsc:~$ sshfs -o IdentityFile=$HOME/.ssh/id_rsa -o allow_other \
SC_USERQ@SC_ENDPOINT:~/.COMPSs \
TARGET_LOCAL_FOLDER/ .COMPSs

Whenever you wish to unmount the sshfs directory please run:

compss@bsc:~$ sudo umount TARGET_LOCAL_FOLDER/.COMPSs

Execution

Access the COMPSs Monitor through its webpage (http://localhost:8080/compss-monitor by default) and log in
with the TARGET_LOCAL_FOLDER to enable the COMPSs Monitor for MareNostrum.

Please remember that to enable all the COMPSs Monitor features applications must be ran with the -m flag. For
further details please check the Ezecuting COMPSs applications Section.

Figure 16 illustrates how to login and Figure 17 shows the COMPSs Monitor main page for an application run
inside a Supercomputer.

€ < Y & &
[#] COMPSs Monitor x
€& = C #ff [localhost:8080/compss-monitor/zulflogin.zul O 0 =

Barcelona

Supercomputing
Center —
Centro Nacional de Supercomputacion

COMPSs Monitor Login

Usemame * | home/compss/MN3/.COMPSs/

Login with the UNIX username or the absolute path of .COMPSs folder you wish to monitor.
Leave in blank for default configuration values.

Login

Figure 16: COMPSs Monitor login for Supercomputers

5.3.1.3 Docker

What is Docker?

Docker is an open-source project that automates the deployment of applications inside software containers, by
providing an additional layer of abstraction and automation of operating-system-level virtualization on Linux. In
addition to the Docker container engine, there are other Docker tools that allow users to create complex applications
(Docker-Compose) or to manage a cluster of Docker containers (Docker Swarm).

COMPSs supports running a distributed application in a Docker Swarm cluster.

5.3. Deployments 169

http://localhost:8080/compss-monitor

COMPSs Documentation, 3.0

Center —
Centro Nacional de Supercomputacion

Barcelona FAQ Configuration Logout
@ Supercomputing COMPSS MONITOR

Applications Resources information | Tasks information | Currenttasks graph | Complete tasks graph | Load chart | Runtimelog | Execution Information | Statistics
® 2435288
Status Resource Name CPU Computing Units | GPU Computing Units | FPGA Computing Units | OTHER Computing Units Memory Size | Disk Size | Provider | Image Running Actions.

Refresh 195 203 387 395 355 44

@ waares s : mocs o

(3) S042680 1 . 28008 B

363 427 435 371 419

226 210 218 275 315 209 330 307 283 259 267 331 243 251 235
202

Figure 17: COMPSs Monitor main page for a test application at Supercomputers

Requirements

In order to use COMPSs with Docker, some requirements must be fulfilled:

e Have Docker and Docker-Compose installed in your local machine.

e Have an available Docker Swarm cluster and its Swarm manager ip and port to access it remotely.

e A Dockerhub account. Dockerhub is an online repository for Docker images. We don’t currently support
another sharing method besides uploading to Dockerhub, so you will need to create a personal account. This
has the advantage that it takes very little time either upload or download the needed images, since it will
reuse the existing layers of previous images (for example the COMPSs base image).

Execution in Docker

The runcompss-docker execution workflow uses Docker-Compose, which is in charge of spawning the different
application containers into the Docker Swarm manager. Then the Docker Swarm manager schedules the containers
to the nodes and the application starts running. The COMPSs master and workers will run in the nodes Docker
Swarm decides. To see where the masters and workers are located in runtime, you can use:

$ docker -H '<swarm_manager_ip:swarm_port>' ps -a

The execution of an application using Docker containers with COMPSs consists of 2 steps:

Execution step 1: Creation of the application image

The very first step to execute a COMPSs application in Docker is creating your application Docker image.

This must be done only once for every new application, and then you can run it as many times as needed. If the
application is updated for whatever reason, this step must be done again to create and share the updated image.

In order to do this, you must use the compss docker gen image tool, which is available in the standard
COMPSs application. This tool is the responsible of taking your application, create the needed image, and upload
it to Dockerhub to share it.

The image is created injecting your application into a COMPSs base image. This base image is available in
Dockerhub. In case you need it, you can pull it using the following command:

170 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

$ docker pull compss/compss

The compss docker gen image script receives 2 parameters:

--c, --context-dir Specifies the context directory path of the application. This path MUST
BE ABSOLUTE, not relative. The context directory is a local directory that
must contain the needed binaries and input files of the app (if any).
In its simplest case, it will contain the executable file (a .jar for example). Keep
the context-directory as lightest as possible.

For example: —context-dir=’/home/compss-user/my-app-dir’ (where
'my-app-dir’ contains ’app.jar’, 'datal.dat’ and ’data2.csv’). For more details,
this context directory will be recursively copied into a COMPSs base image.
Specifically, it will create all the path down to the context directory inside the
image.

--image-name Specifies a name for the created image. It MUST have this format:
'DOCKERHUB-USERNAME /image-name’. The DOCKERHUB_USERNAME
must be the username of your personal Dockerhub account. The image name
can be whatever you want, and will be used as the identifier for the image in
Dockerhub. This name will be the one you will use to execute the application
in Docker. For example, if my Dockerhub username is john123 and I want my
image to be named “my-image-app”: --image-name=‘‘john123/my-image-app’’.

As stated before, this is needed to share your container application image with
the nodes that need it. Image tags are also supported (for example “john123/my-
image-app:1.23).

Important: After creating the image, be sure to write down the absolute context-directory and the absolute
classpath (the absolute path to the executable jar). You will need it to run the application using runcompss-docker.
In addition, if you plan on distributing the application, you can use the Dockerhub image’s information tab to
write them, so the application users can retrieve them.

Execution step 2: Run the application

To execute COMPSs in a Docker Swarm cluster, you must use the runcompss-docker command, instead of
runcompss.

The command runcompss-docker has some additional arguments that will be needed by COMPSs to run
your application in a distributed Docker Swarm cluster environment. The rest of typical arguments (classpath for
example) will be delegated to runcompss command.

These additional arguments must go before the typical runcompss arguments. The runcompss-docker additional
arguments are:

--w, --worker-containers Specifies the number of worker containers the app will execute on.
One more container will be created to host the master. If you have enough nodes
in the Swarm cluster, each container will be executed by one node. This is the de-
fault schedule strategy used by Swarm. For example: --worker-containers=3

--s, --swarm-manager Specifies the Swarm manager ip and port (format: ip:port). For example:
--swarm-manager=’129.114.108.8:4000’

--i, --image-name Specify the image name of the application image in Dockerhub. Remem-
ber you must generate this with compss docker gen image Remember as
well that the format must be: 'DOCKERHUB USERNAME/APP IMAGE -
NAME:TAG’ (the :TAG is optional). For example: --image-name=’john123/
my-compss-application:1.9’

5.3. Deployments 171

COMPSs Documentation, 3.0

--c, --context-dir Specifies the context directory of the app. It must be specified by the ap-
plication image provider. For example: --context-dir=’/home/compss-user/
my-app-context-dir’

As optional arguments:

--c-cpu-units Specifies the number of cpu units used by each container (default value is 4). For
example: *--c-cpu-units:=16

--c-memory Specifies the physical memory used by each container in GB (default value is 8
GB). For example, in this case, each container would use as maximum 32 GB of
physical memory: --c-memory=32

Here is the format you must use with runcompss-docker command:

$ runcompss-docker --worker-containers=N \
--swarm-manager='<ip>:<port>' \
--image-name='DOCKERHUB_USERNAME/image_name' \
--context-dir='CTX_DIR' \
[rest of classic runcompss args]

Or alternatively, in its shortest form:

$ runcompss-docker --w=N --s='<ip>:<port>' --i='DOCKERHUB_USERNAME/image_name' --c='CTX_DIR' \
[rest of classic runcompss args]

Execution with TLS

If your cluster uses TLS or has been created using Docker-Machine, you will have to export two environment
variables before using runcompss-docker:

On one hand, DOCKER__TLS VERIFY environment variable will tell Docker that you are using TLS:

export DOCKER_TLS_VERIFY="1"

On the other hand, DOCKER CERT PATH variable will tell Docker where to find your TLS certificates. As

an example:

export DOCKER_CERT_PATH="/home/compss-user/.docker/machine/machines/my-manager-node"

In case you have created your cluster using docker-machine, in order to know what your DOCKER _CERT PATH
is, you can use this command:

$ docker-machine env my-swarm-manager-node-name | grep DOCKER_CERT_PATH

In which swarm-manager-node-name must be changed by the name docker-machine has assigned to your swarm
manager node. With these environment variables set, you are ready to use runcompss-docker in a cluster using
TLS.

Execution results

The execution results will be retrieved from the master container of your application.

If your context-directory name is matmul’, then your results will be saved in the 'matmul-results’ directory,
which will be located in the same directory you executed runcompss-docker on.

Inside the matmul-results’ directory you will have:

e A folder named matmul’ with all the result files that were in the same directory as the executable when
the application execution ended. More precisely, this will contain the context-directory state right after
finishing your application execution. Additionally, and for more advanced debug purposes, you will have

172 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

some intermediate files created by runcompss-docker (Dockerfile, project.xml, resources.xml), in case you
want to check for more complex errors or details.

e A folder named ’debug’, which (in case you used the runcompss debug option (-d)), will contain the
’.COMPSSs’ directory, which contains another directory in which there are the typical debug files runtime.log,
jobs, etc. Remember .COMPSs is a hidden directory, take this into account if you do ls inside the debug
directory (add the -a option).

To make it simpler, we provide a tree visualization of an example of what your directories should look like after
the execution. In this case we executed the Matmul example application that we provide you:

matmul
L— matmul.jar
matmul-results
— debug
L— .compss
L— matmul.files.Matmul_61
jobs
jobl NEW.err
job1_NEW.out
job2_NEW.err
Job2_NEW.out
job3_NEW.err
Jjob3_NEW.out
resources.log
runtime.log
tmpFiles

— matmul

W > > >
[<R-R-NoRol
rONR O

B.0.2
Dockerfile
matmul.jar
project.xml
resources.xml

Figure 18: Result and log folders of a Matmul execution with COMPSs and Docker

Execution examples

Next we will use the Matmul application as an example of a Java application running with COMPSs and Docker.

Imagine we have our Matmul application in /home/john/matmul and inside the matmul directory we only have the
file matmul. jar.

We have created a Dockerhub account with username ’john123’.

The first step will be creating the image:

$ compss_docker_gen_image --context-dir='/home/john/matmul' \
--image-name="'john123/matmul-example'

Now, we write down the context-dir (/home/john/matmul) and the classpath (/home/john/matmul/matmul.jar).
We do this because they will be needed for future executions. Since the image is created and uploaded, we won’t
need to do this step anymore.

Now we are going to execute our Matmul application in a Docker cluster.
Take as assumptions:

We will use 5 worker docker containers.

The swarm-manager ip will be 129.114.108.8, with the Swarm manager listening to the port 4000.

We will use debug (-d).

Finally, as we would do with the typical runcompss, we specify the main class name and its parameters
(16 and 4 in this case).

In addition, we know from the former step that the image name is john123/matmul-example, the context direc-
tory is /home/john/matmul, and the classpath is /home/john/matmul/matmul.jar. And this is how you would
run runcompss-docker:

5.3. Deployments 173

COMPSs Documentation, 3.0

$ runcompss-docker --worker-containers=5 \
--swarm-manager="'129.114.108.8:4000" \
--context-dir="'/home/john/matmul' \
--image-name="'john123/matmul-example' \
--classpath=/home/john/matmul /matmul . jar \
-d \
matmul.objects.Matmul 16 4

Here we show another example using the short arguments form, with the KMeans example application, that is also
provided as an example COMPSs application to you:

First step, create the image once:

$ compss_docker_gen_image --context-dir='/home/laura/apps/kmeans’' \
--image-name='laura-67/my-kmeans'

And now execute with 30 worker containers, and Swarm located in '110.3.14.159:26535’.

$ runcompss-docker --w=30 \
--5="'110.3.14.159:26535"' \
--c='/home/laura/apps/kmeans' \
--image-name='laura-67/my-kmeans' \
--classpath=/home/laura/apps/kmeans/kmeans.jar \
kmeans .KMeans

5.3.1.4 Chameleon

What is Chameleon?

The Chameleon project is a configurable experimental environment for large-scale cloud research based on a
OpenStack KVM Cloud. With funding from the National Science Foundation (NSF), it provides a large-scale
platform to the open research community allowing them explore transformative concepts in deeply programmable
cloud services, design, and core technologies. The Chameleon testbed, is deployed at the University of Chicago
and the Texas Advanced Computing Center and consists of 650 multi-core cloud nodes, 5PB of total disk space,
and leverage 100 Gbps connection between the sites.

The project is led by the Computation Institute at the University of Chicago and partners from the Texas Advanced
Computing Center at the University of Texas at Austin, the International Center for Advanced Internet Research
at Northwestern University, the Ohio State University, and University of Texas at San Antoni, comprising a highly
qualified and experienced team. The team includes members from the NSF supported FutureGrid project and
from the GENI community, both forerunners of the NSFCloud solicitation under which this project is funded.
Chameleon will also sets of partnerships with commercial and academic clouds, such as Rackspace, CERN and
Open Science Data Cloud (OSDC).

For more information please check https://www.chameleoncloud.org/ .

Execution in Chameleon

Currently, COMPSs can only handle the Chameleon infrastructure as a cluster (deployed inside a lease). Next, we
provide the steps needed to execute COMPSs applications at Chameleon:

e Make a lease reservation with 1 minimum node (for the COMPSs master instance) and a maximum number
of nodes equal to the number of COMPSs workers needed plus one

e Instantiate the master image (based on the published image COMPSs _ CC-CentOS7)

e Attach a public IP and login to the master instance (the instance is correctly contextualized for COMPSs
executions if you see a COMPSs login banner)

e Set the instance as COMPSs master by running /etc/init.d/chameleon_init start

174 Chapter 5. Execution Environments

https://www.chameleoncloud.org/

COMPSs Documentation, 3.0

e Copy your CH file (API credentials) to the Master and source it

e Run the chameleon_cluster_setup script and fill the information when prompted (you will be asked for
the name of the master instance, the reservation id and number of workers). This scripts may take several
minutes since it sets up the all cluster.

e Execute your COMPSs applications normally using the runcompss script

As an example you can check this video https://www.youtube.com/watch?v=BrQ6anPHjAU performing a full
setup and execution of a COMPSs application at Chameleon.

5.3.1.5 Jupyter Notebook

Notebook execution

The jupyter notebook can be executed as a common Jupyter notebook by steps or the whole application.

Important: A message showing the failed task/s will pop up if an exception within them happens.

This pop up message will also allow you to continue the execution without PyCOMPSs, or to restart the COMPSs
runtime. Please, note that in the case of COMPSs restart, the tracking of some objects may be lost (will need to
be recomputed).

Notebook example

Sample notebooks can be found in the PyCOMPSs Notebooks Section.

Tips and Tricks
Tasks information

It is possible to show task related information with tasks_info function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current tasks info
ipycompss.tasks_info()

ipycompss.stop(sync=True)

Subsequent code

Important: The tasks information will not be displayed if the monitor option at ipycompss.start is not set
(to a refresh value).

The tasks_info function provides a widget that can be updated while running other cells from the notebook,
and will keep updating every second until stopped. Alternatively, it will show a snapshot of the tasks information
status if ipywidgets is not available.

5.3. Deployments 175

https://www.youtube.com/watch?v=BrQ6anPHjAU

COMPSs Documentation, 3.0

The information displayed is composed by two plots: the left plot shows the average time per task, while the right
plot shows the amount of tasks. Then, a table with the specific number of number of executed tasks, maximum
execution time, mean execution time and minimum execution time, per task is shown.

Tasks status

It is possible to show task status (running or completed) tasks with the tasks_status function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current tasks info
ipycompss.tasks_status()

ipycompss.stop(sync=True)

Subsequent code

Important: The tasks information will not be displayed if the monitor option at ipycompss.start is not set
(to a refresh value).

The tasks_status function provides a widget that can be updated while running other cells from the notebook,
and will keep updating every second until stopped. Alternatively, it will show a snapshot of the tasks status if
ipywidgets is not available.

The information displayed is composed by a pie chart and a table showing the number of running tasks, and the
number of completed tasks.

Resources status

It is possible to show resources status with the resources_status function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current tasks info
ipycompss.resources_status()

ipycompss.stop(sync=True)

Subsequent code

Important: The tasks information will not be displayed if the monitor option at ipycompss.start is not set
(to a refresh value).

176 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

The resources_status function provides a widget that can be updated while running other cells from the note-
book, and will keep updating every second until stopped. Alternatively, it will show a snapshot of the resources
status if ipywidgets is not available.

The information displayed is a table showing the number of computing units, gpus, fpgas, other computing units,
amount of memory, amount of disk, status and actions.

Current task graph

It is possible to show the current task graph with the current_task_graph function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current task graph
ipycompss.current_task_graph()

ipycompss.stop(sync=True)

Subsequent code

Important: The graph will not be displayed if the graph option at ipycompss.start is not set to true.

In addition, the current_task_graph has some options. Specifically, its full signature is:

current_task_graph(fit=False, refresh_rate=1, timeout=0)

Parameters:

fit Adjust the size to the available space in jupyter if set to true. Display full size if set to false
(default).

refresh_rate When timeout is set to a value different from 0, it defines the number of seconds between
graph refresh.

timeout Check the current task graph during the timeout value (seconds). During the timeout value,
it refresh the graph considering the refresh rate value. It can be stopped with the stop button of
Jupyter. Does not update the graph if set to 0 (default).

Caution: The graph can be empty if all pending tasks have been completed.

Complete task graph

It is possible to show the complete task graph with the complete_task_graph function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

(continues on next page)

5.3. Deployments 177

COMPSs Documentation, 3.0

(continued from previous page)

Check the current task graph
ipycompss.complete_task_graph()

ipycompss.stop(sync=True)

Subsequent code

Important: The graph will not be displayed if the graph option at ipycompss.start is not set to true.

In addition, the complete_task_graph has some options. Specifically, its full signature is:

complete_task_graph(fit=False, refresh_rate=1, timeout=0)

Parameters:

fit Adjust the size to the available space in jupyter if set to true. Display full size if set to false
(default).

refresh_rate When timeout is set to a value different from 0, it defines the number of seconds between
graph refresh.

timeout Check the current task graph during the timeout value (seconds). During the timeout value,
it refresh the graph considering the refresh rate value. It can be stopped with the stop button of
Jupyter. Does not update the graph if set to 0 (default).

Caution: The graph may be empty or raise an exception if the graph has not been updated by the runtime
(may happen if there are too few tasks). In this situation, stop the compss runtime (synchronizing the remaining
objects if intended to start the runtime afterwards) and try again.

5.3.2 Agents Deployments

Opposing to well-established deployments with an almost-static set of computing resources and hardly-varying
interconnection conditions such as a single-computer, a cluster or a supercomputer; dynamic infrastructures, like
Fog environments, require a different kind of deployment able to adapt to rapidly-changing conditions. Such
infrastructures are likely to comprise several mobile devices whose connectivity to the infrastructure is temporary.
When the device is within the network range, it joins an already existing COMPSs deployment and interacts with
the other resources to offload tasks onto them or viceversa. Eventually, the connectivity of that mobile device
could be disrupted to never reestablish. If the leaving device was used as a worker node, the COMPSs master
needs to react to the departure and reassign the tasks running on that node. If the device was the master node, it
should be able to carry on with the computation being isolated from the rest of the infrastructure or with another
set of available resources.

COMPSs Agents is a deployment approach especially designed to fit in this kind of environments. Each device is an
autonomous individual with processing capabilities hosting the execution of a COMPSs runtime as a background
service. Applications - running on that device or on another - can contact this service to request the execution of a
function in a serverless, stateless manner (resembling the Function-as-a-Service model). If the requested function
follows the COMPSs programming model, the runtime will parallelise its execution as if it were the main function
of a regular COMPSs application.

Agents can associate with other agents by offering their embedded computing resources to execute functions to
achieve a greater purpose; in exchange, they receive a platform where they can offload their computation in the same
manner, and, thus, achieve lower response times. As opossed to the master-worker approach followed by the classic
COMPSs deployment, where a single node produces the all the workload, in COMPSs Agents deployments, any
of the nodes within the platform becomes a potential source of computation to distribute. Therefore, this master-
centric approach where workload producer to orchestrate holistically the execution is no longer valid. Besides,
concentrating all the knowledge of several applications and handling the changes of infrastructure represents an
important computational burden for the resource assuming the master role, especially if it is a resource-scarce

178 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

device like a mobile. For this two reasons, COMPSs agents proposes a hierachic approach to organize the nodes.
Each node will only be aware of some devices with which it has direct connection and only decides whether the
task runs on its embedded computing devices or if the responsability of executing the task is delegated onto one
of the other agents. In the latter case, the receiver node will face the same problem and decide whether it should
host the execution or forward it to a different node.

The following image illustrates an example of a COMPSs agents hierarchy that could be deployed in any kind of
facilities; for instance, a university campus. In this case, students only interact directly with their mobile phones
and laptops to run their applications; however, the computing workload produced by them is distributed across
the whole system. To do so, the mobile devices need to connect to one of the edge devices devices scattered across
the facilities acting as a Wi-Fi Hotspot (in the example, raspberry Pi) which runs a COMPSs agent. To submit
the operation execution to the platform, mobile devices can either contact a COMPSs agent running in the device
or the application can directly contact the remote agent running on the rPI. All rPi agents are connected to an
on-premise server within the campus that also runs a COMPSs Agent. Upon an operation request by a user device,
the rPi can host the computation on its own devices or forward the request to one of its neighbouring agents: the
on-premise server or another user’s device running a COMPSs agent. In the case that the rPi decides to move
up the request through the hierarchy, the on-premise server faces a similar problem: hosting the computation on
its local devices, delegating the execution onto one of the rPi — which in turn could forward the execution back
to another user’s device —, or submit the request to a cloud. Internally, the Cloud can also be organized with
COMPSs Agents hierarchy; thus, one of its nodes can act as the gateway to receive external requests and share
the workload across the whole system.

5.3.2.1 Local

This section is intended to show how to execute COMPSs applications deploying the runtime as an agent in local
machines.

Deploying a COMPSs Agent

COMPSs Agents are deployed using the compss _agent start command:

compss@bsc:~$ compss_agent_start [OPTION]

There is one mandatory parameter --hostname that indicates the name that other agents and itself use to refer to
the agent. Bear in mind that agents are not able to dynamically modify its classpath; therefore, the --classpath
parameter becomes important to indicate the application available on the agent. Any public method available on
the classpath is an execution request candidate.

5.3. Deployments 179

COMPSs Documentation, 3.0

The following command raises an agent with name 192.168.1.100 and any of the public methods of the classes
encapsulated in the jarfile /app/path. jar can be executed.

compss@bsc:~$ compss_agent_start --hostname=192.168.1.100 --classpath=/app/path.jar

The compss_agent_start command allows users to set up the COMPSs runtime by specifying different options in
the same way as done for the runcompss command. To indicate the available resources, the device administrator
can use the --project and --resources option exactly in the same way as for the runcompss command. For
further details on how to dynamically modify the available resources, please, refer to section Modifying the available
resources.

Currently, COMPSs agents allow interaction through two interfaces: the Comm interface and the REST interface.
The Comm interface leverages on a propietary protocol to submit operations and request updates on the current
resource configuration of the agent. Although users and applications can use this interface, its design purpose
is to enable high-performance interactions among agents rather than supporting user interaction. The REST
interface takes the completely opposed approach; Users should interact with COMPSs agents through it rather
than submitting tasks with the Comm interface. The COMPSs agent allows to enact both interfaces at a time;
thus, users can manually submit operations using the REST interface, while other agents can use the Comm
interface. However, the device owner can decide at deploy time which of the interfaces will be available on the
agent and through which port the API will be exposed using the rest_port and comm_port options of the compss_-
agent_start command. Other agents can be configured to interact with the agent through any of the interfaces.
For further details on how to configure the interaction with another agent, please, refer to section Modifying the
available resources.

compss@bsc:~$ compss_agent_start -h
Usage: /opt/COMPSs/Runtime/scripts/user/compss_agent_start [OPTION]...

COMPSs options:

--appdir=<path> Path for the application class folder.
Default: /home/flordan/git/compss/framework/
—builders
--classpath=<path> Path for the application classes / modules
Default: Working Directory
--comm=<className> Class that implements the adaptor for,

—communications with other nodes
Supported adaptors:
es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor
es.bsc.compss.agent.rest.Adaptor
es.bsc.compss.agent.comm.CommAgentAdaptor
Default: es.bsc.compss.agent.comm.CommAgentAdaptor

--comm_port=<int> Port on which the agent sets up a Comm interface.
—(<=0: Disabled)

-d, --debug Enable debug. (Default: disabled)

--hostname Name with which itself and other agents will,
—identify the agent.

--jvm_opts="string" Extra options for the COMPSs Runtime JVM. Each,
—option separed by "," and without blank spaces (Notice the quotes)
--library_path=<path> Non-standard directories to search for libraries

(e o Java JUM librarv _ Python librarvy C binding librarvy)
[=] J 7 J J T (=) J

(continues on next page)

180 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

(continued from previous page)

--log_dir=<path>

--log_level=<level>
—trace

--master_port=<int>

Default: Working Directory

Log directory. (Default: /tmp/)

Set the debug level: off | info | api | debug |,
Default: off

Port to run the COMPSs master communications.
(Only when es.bsc.compss.nio.master.NIOAdaptor is

—used. The value is overriden by the comm_port value.)

--pythonpath=<path>
—PYTHONPATH

—builders

--python_interpreter=<string>
—python3) .

--python_propagate_virtual_environment=<true>

—~to the workers (true/false).

--python_mpi_worker=<false>
—multiprocessing. (true/false).
--python_memory_profile

--python_worker_cache=<string>

--project=<path>
—projects/examples/local/project.xml)

--resources=<path>
—resources/examples/local/resources.xml)

--rest_port=<int>
—(<=0: Disabled)

--reuse_resources_on_block=<boolean>
—~to a task when its execution stalls.

--scheduler=<className>

—FIFODataLocationScheduler

Default: [43000,44000]
Additional folders or paths to add to they

Default: /home/flordan/git/compss/framework/

Python interpreter to use (python/python2/
Default: python Version:

Propagate the master virtual environment,
Default: true

Use MPI to run the python worker instead of,
Default: false

Generate a memory profile of the master.

Default: false

Python worker cache (true/size/false).

Only for NIO without mpi worker and python >= 3.8.
Default: false

Path of the project file

(Default: /opt/COMPSs/Runtime/configuration/xml/

Path of the resources file
(Default: /opt/COMPSs/Runtime/configuration/xml/

Port on which the agent sets up a REST interface.

Enables/Disables reusing the resources assigned,,
(Default:true)

Class that implements the Scheduler for COMPSs
Supported schedulers:

F—— es.bsc.compss.scheduler.fifodatalocation.

F—— es.bsc.compss.scheduler.fifonew.

—rliruscnequler

(continues on next page)

5.3. Deployments

181

COMPSs Documentation, 3.0

(continued from previous page)

f—— es.bsc.compss.scheduler.fifodatanew.
—FIFODataScheduler

|—— es.bsc.compss.scheduler.lifonew.
—LIFOScheduler

f—— es.bsc.compss.components.impl.
—TaskScheduler

— es.bsc.compss.scheduler.loadbalancing.
—LoadBalancingScheduler
Default: es.bsc.compss.scheduler.loadbalancing.
—LoadBalancingScheduler

--scheduler_config_file=<path> Path to the file which contains the scheduler,
—configuration.
Default: Empty

--input_profile=<path> Path to the file which stores the input,
—application profile
Default: Empty

--output_profile=<path> Path to the file to store the application profile,
—at the end of the execution
Default: Empty

--summary Displays a task execution summary at the end of,
—the application execution
Default: false

--tracing=<level>, --tracing, -t Set generation of traces and/or tracing level ([,
—true | basic] | advanced | scorep | arm-map | arm-ddt | false)
True and basic levels will produce the same
—traces.
When no value is provided it is set to 1
Default: O
--trace_label=<string> Add a label in the generated trace file. Only,

—used in the case of tracing is activated.
Default: None

Other options:
--help prints this message

Executing an operation

The compss _agent call operation commands interacts with the REST interface of the COMPSs agent to
submit an operation.

compss@bsc:~$ compss_agent_call_operation [options] application_name application_arguments

The command has two mandatory flags --master_node and --master_port to indicate the endpoint of the
COMPSs Agent. By default, the command submits an execution of the main method of the Java class with the
name passed in as the application_name and gathering all the application arguments in a single String[| instance.
To execute Python methods, the user can use the --1ang=PYTHON option and the Agent will execute the python
script with the name passed in as application_name. Operation invocations can be customized by using other
options of the command. The --method_name option allow to execute a specific method; in the case of specifying
a method, each of the parameters will be passed in as a different parameter to the function and it is necessary to
indicate the --array flag to encapsulate all the parameters as an array.

182 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

Additionally, the command offers two options to shutdown a whole agents deployment upon the operation com-
pletion. The flag --stop indicates that, at the end of the operation, the agent receiving the operation request will
stop. For shutting down the rest of the deployment, the command offers the option --forward_to to indicate a
list of IP:port pairs. Upon the completion of the operation, the agent receiving the request will forward the stop
command to all the nodes specified in such option.

compss@bsc.es:~$ compss_agent_call_operation -h
Usage: compss_agent_call_operation [options] application_name application_arguments

* Options:

General:

--help, -h Print this help message

--opts Show available options

--version, -V Print COMPSs version

--master_node=<string> Node where to run the COMPSs Master
Mandatory

--master_port=<string> Node where to run the COMPSs Master
Mandatory

--stop Stops the agent after the execution
of the task.

--forward_to=<list> Forwards the stop action to other
agents, the list shoud follow the
format:

<ipl>:<portil>;<ip2>:<port2>...
Launch configuration:
--cei=<string> Canonical name of the interface declaring they,
—methods
Default: No interface declared

--lang=<string> Language implementing the operation
Default: JAVA

--method_name=<string> Name of the method to invoke
Default: main and enables array parameter

--parameters_array, --array Parameters are encapsulated as an array
Default: disabled

For example, to submit the execution of the demoFunction method from the es.bsc.compss.tests.DemoClass
class passing in a single parameter with value 1 on the agent 127.0.0.1 with a REST interface listening on port
46101, the user should execute the following example command:

compss@bsc.es:~$ compss_agent_call_operation --master_node="127.0.0.1" --master_port="46101" -
—-method_name="demoFunction" es.bsc.compss.test.DemoClass 1

For the agent to detect inner tasks within the operation execution, the COMPSs Programming model requires an
interface selecting the methods to be replaced by asynchronous task creations. An invoker should use the --cei
option to specify the name of the interface selecting the tasks.

5.3. Deployments 183

COMPSs Documentation, 3.0

Modifying the available resources

Finally, the COMPSs framework offers tree commands to control dynamically the pool of resources available for the
runtime un one agent. These commands are compss_agent_add_resources, compss_agent_reduce_resources
and compss_agent_lost_resources

The compss _agent add _resources commands interacts with the REST interface of the COMPSs agent to
attach new resources to the Agent.

compss@bsc.es:”$ compss_agent_add_resources [options] resource_name [<adaptor_property_
—name=adaptor_property_value>]

By default, the command modifies the resource pool of the agent deployed on the node running the command
listenning on port 46101; however, this can be modified by using the options --agent_node and --agent_-
port to indicate the endpoint of the COMPSs Agent. The other options passed in to the command modify the
characteristics of the resources to attach; by default, it adds one single CPU core. However, it also allows to modify
the amount of GPU cores, FPGAs, memory type and size and OS details.

compss@bsc.es:~$ compss_agent_add_resources -h

Usage: compss_agent_add_resources [options] resource_name [<adaptor_property_name=adaptor_
—property_value>]

* Options:

General:
--help, -h Print this help message
--opts Show available options
--version, -v Print COMPSs version
--agent_node=<string> Name of the node where to add the resource
Default:
--agent_port=<string> Port of the node where to add the resource
Default:
Resource description:
--comm=<string> Canonical class name of the adaptor to interact,

—with the resource
Default: es.bsc.compss.agent.comm.CommAgentAdaptor

--cpu=<integer> Number of cpu cores available on the resource
Default: 1

--gpu=<integer> Number of gpus devices available on the resource
Default: O

--fpga=<integer> Number of fpga devices available on the resource
Default: O

--mem_type=<string> Type of memory used by the resource

Default: [unassigned]

--mem_size=<string> Size of the memory available on the resource
Default: -1
--os_type=<string> Type of operating system managing the resource

Default: [unassigned]

(continues on next page)

184 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

(continued from previous page)

--os_distr=<string> Distribution of the operating system managing the
—resource
Default: [unassigned]
--os_version=<string> Version of the operating system managing the
—resource
Default: [unassigned]

If resource_name matches the name of the Agent, the capabilities of the device are increased according to the
description; otherwise, the runtime adds a remote worker to the resource pool with the specified characteristics.
Notice that, if there is another resource within the pool with the same name, the agent will increase the resources
of such node instead of adding it as a new one. The --comm option is used for selecting which adaptor is used for
interacting with the remote node; the default adaptor (CommAgent) interacts with the remote node through the
Comm interface of the COMPSs agent.

The following command adds a new Agent onto the pool of resources of the Agent deployed at TP 192.168.1.70
with a REST Interface on port 46101. The new agent, which has 4 CPU cores, is deployed on IP 192.168.1.72 and
has a Comm interface endpoint on port 46102.

compss@bsc.es:~$ compss_agent_add_resources --agent_node=192.168.1.70 --agent_port=46101 --
—cpu=4 192.168.1.72 Port=46102

Conversely, the compss_agent_reduce_resources command allows to reduce the number of resources configured
in an agent. Executing the command causes the target agent to reduce the specified amount of resources from one
of its configured neighbors. At the moment of the reception of the resource removal request, the agent might be
actively using those remote resources by executing some tasks. If that is the case, the agent will register the resource
reduction request, stop submitting more workload to the corresponding node, and, when the idle resources of the
node match the request, the agent removes them from the pool. If upon the completion of the compss_agent_-
reduce_resources command no resources are associated to the reduced node, the node is completely removed
from the resource pool of the agent. The options and default values are the same than for the compss_agent_-
add_resources command. Notice that --comm option is not available because only one resource can be associated
to that name regardless the selected adaptor.

compss@bsc.es:™$ compss_agent_reduce_resources -h
Usage: compss_agent_reduce_resources [options] resource_name

* Options:

General:
--help, -h Print this help message
--opts Show available options

--version, -v

--agent_node=<string>

--agent_port=<string>
Resource description:

--cpu=<integer>

--gpu=<integer>

Print COMPSs version

Name of the node where to add the resource
Default:

Port of the node where to add the resource
Default:

Number of cpu cores available on the resource
Default: 1

Number of gpus devices available on the resource
Default: O

(continues on next page)

5.3. Deployments

185

COMPSs Documentation, 3.0

(continued from previous page)

--fpga=<integer> Number of fpga devices available on the resource
Default: O
--mem_type=<string> Type of memory used by the resource

Default: [unassigned]

--mem_size=<string> Size of the memory available on the resource
Default: -1
--os_type=<string> Type of operating system managing the resource

Default: [unassigned]

--os_distr=<string> Distribution of the operating system managing the,
—resource
Default: [unassigned]

--os_version=<string> Version of the operating system managing they
—resource
Default: [unassigned]

Finally, the last command to control the pool of resources configured, compss_agent_lost_resources, immedi-
ately removes from an agent’s pool all the resources corresponding to the remote node associated to that name.

compss@bsc.es:~$ compss_agent_lost_resources [options] resource_name

In this case, the only available options are those used for identifying the endpoint of the agent:--agent_node and
--agent_port. As with the previous commands, by default, the request is submitted to the agent deployed on the
IP address 127.0.0.1 and listenning on port 46101.

5.3.2.2 Supercomputers

Similar to Section Supercomputers for Master-Worker deployments, this section is intended to walk you through
the COMPSs usage with agents in Supercomputers. All the configuration and commands to install COMPSs on
the Supercomputer, load the environment and submitting a job remain exactly the same as described in Sections
Supercomputers.

The only difference to submit jobs with regards the COMPSs Master-Worker approach is to enact the agents option
of the enqueue compss command. When this option is enabled, the whole COMPSs deployment changes and,
instead of deploying the COMPSs master in one node and workers in the remaining ones, it deploys an agent
in each node provided by the queue system. When all the agents have been deployed, COMPSs’ internal scripts
handling the job execution will submit the operation using the REST API of the one of the agent. Although
COMPSs agents allow any method of the application to be the starting point of the execution, to mantain the
similarities between the scripts when deploying COMPSs following the Master-Worker or the Agents approaches,
the execution will start with the main method of the class/module passed in as a parameter to the script.

The main advantage of using the Agents approach in Supercomputers is the ability to define different topologies.
For that purpose, the --agents option of the enqueue compss script allows to choose two different options
--agents=plain and --agents=tree.

The Plain topology configures the deployment resembling the Master-worker approach. One of the agents is
selected as the master an has all the other agents as workers where to offload tasks; the agents acting as workers
also host a COMPSs runtime and, therefore, they can detect nested tasks on the tasks offloaded onto them.
However, nested tasks will always be executed on the worker agent detecting them.

The Tree topology is the default topology when using agent deployments on Supercomputers. These option tries
to create a three-layer topology that aims to exploit data locality and reduce the workload of the scheduling
problem. Such topology consists in deploying an agent on each node managing only the resources available within

186 Chapter 5. Execution Environments

COMPSs Documentation, 3.0

the node. Then, the script groups all the nodes by rack and selects a representative node for each group that will
orchestrate all the resources within it and offload tasks onto the other agents. Finally, the script picks one of these
representative agents as the main agent of the hierarchy; this main agent is configured to be able to offload tasks
onto the representative agents for all other racks; it will be onto this node that the script will call the main method
of the execution. The following image depicts an example of such topology on Marenostrum.

~

O Mode 1 O Mode 1
—O Node2 rack02 —O Node? rack4s
—() Node3 —() Node3

() Node 72 40 Node 72

To ensure that no resources are wasted waiting from the execution end until the wall clock limit, the enqueue -
compss script submits the invocation enabling the --stop and --forward options to stop all the deployed agents
for the execution.

5.3. Deployments 187

COMPSs Documentation, 3.0

188 Chapter 5. Execution Environments

Chapter 6

Tools

COMPSs has a rich echosystem of tools that help on monitoring and measuring the perfornamce of COMPSs
applications.

This section is intended to walk you through the COMPSs’ tools.

6.1 Application graph

At the end of the application execution a dependency graph can be generated representing the order of execution
of each type of task and their dependencies. To allow the final graph generation the -g flag has to be passed to the
runcompss command (alternative flags to the -g are the --graph or the --graph=true); the graph file is written
in the <BASE_LOG_DIR>/monitor/complete_graph.dot at the end of the execution (<BASE_LOG_DIR> is usually
$HOME/ . COMPSs unless the --base_log_dir=<BASE_LOG_DIR> flag is specified).

Warning: Application graph generation is not supported using agents.

Figure 19 shows a dependency graph example of a SparseLU Java application. The graph can be converted from
dot format to pdf format by running the following command:

compss@bsc:~$ compss_gengraph ~/.COMPSs/sparselU.arrays.SparseLU_01/monitor/complete_graph.dot

6.2 Monitor

The COMPSs Framework includes a Web graphical interface that can be used to monitor the execution of COMPSs
applications. COMPSs Monitor is installed as a service and can be easily managed by running any of the following
commands:

compss@bsc:~$ /etc/init.d/compss-monitor usage
Usage: compss-monitor {start | stop | reload | restart | try-restart | force-reload | status}

Warning: The monitor is not supported using agents.

189

COMPSs Documentation, 3.0

Figure 19: The dependency graph of the SparseLLU application

6.2.1 Service configuration

The COMPSs Monitor service can be configured by editing the /opt/COMPSs/Tools/monitor/apache-tomcat/
conf/compss-monitor.conf file which contains one line per property:

COMPSS MONITOR Default directory to retrieve monitored applications (defaults to the .COMPSs folder
inside the root user).

COMPSs MONITOR _PORT Port where to run the compss-monitor web service (defaults to 8080).

COMPSs MONITOR_TIMEOUT Web page timeout between browser and server (defaults to 20s).

6.2.2 Usage

In order to use the COMPSs Monitor users need to start the service as shown in Figure 20.

Tip: The monitor can be started and stopped in multiple environments (local, docker and supercomputer)
automatically using the CLI. Please check: Running the COMPSs monitor

And use a web browser to open the specific URL:

compss@bsc:~$ firefox http://localhost:8080/compss-monitor &

The COMPSs Monitor allows to monitor applications from different users and thus, users need to first login to
access their applications. As shown in Figure 21, the users can select any of their executed or running COMPSs
applications and display it.

To enable all the COMPSs Monitor features, applications must run the runcompss command with the -m flag.
This flag allows the COMPSs Runtime to store special information inside inside the log_base_folder under the
monitor folder (see Figure 21 and Figure 22). Only advanced users should modify or delete any of these files. If
the application that a user is trying to monitor has not been executed with this flag, some of the COMPSs Monitor
features will be disabled.

190 Chapter 6. Tools

COMPSs Documentation, 3.0

compss@bsc:~S fetc/init.d/compss-monitor start
* Starting COMPSs Monitor
* Checking JAVA Installation...
Warning: JRE_HOME not defined
Info: JAVA_HOME found.
Loading JRE_HOME from JAVA_HOME

* Checking IT_HOME...
: IT_HOME not defined. Trying default location fopt/COMPSs/
Success
* Checking IT_MONITOR...
IT_MONITOR=/home/compss/.COMPSs/
Success
* Checking COMPSs Monitor Port...
Warning: COMPSs_MONITOR_PORT not defined.
Loading from configuration file.
COMPSs_MONITOR_PORT=8080
Success
* Checking COMPSs Monitor Timeout...
Warning: COMPSs_MONITOR_TIMEOUT not defined.
Loading from configuration file.
COMPSs_MONITOR_TIMEOUT=20000
Success
* Configuring COMPSs Menitor service...
success
Jopt/COMPSs/Tools/monitor fapache-tomcat
Using CATALINA_HOME Jopt/COMPSs/Tools/monitor /apache-tomcat
Using CATALINA_TMPDIR: /fopt/COMPSs/Tools/monitor/apache-tomcat/temp
Using JRE_HOME: fusrflib/jvm/java-8-openjd
Using CLASSPATH: fopt/COMPSs/Tools/monitor/apache-tomcat/bin/bootstrap.jar:/opt/COMPSs/Tools/monitor/apache-tomcat/bin/tomcat-juli.jar
Tomcat started.

Figure 20: COMPSs Monitor start command

COMPSs Monitor x
€ localhost C % B 43 & & =
FAQ Configuration Logout

Barcelona
Supercomputing COMPSS MONITOR
Center —
Centro Nacional de Supercormputacion

Applictions Resources information | Tasksinformation | Currenttasksgraph | Complete fasks graph | Loadchart | Runiimelog | Execution information | Statistics

il 2 status Resource Name CPU Computing Units GPU Computing Units | FPGA Computing Units | OTHER Computing Units | Memory Size Disk Size Provider Image Running Actions

Bekeen © localhost 4 -GE -G8

Figure 21: COMPSs monitoring interface

6.2. Monitor 191

COMPSs Documentation, 3.0

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss -dm simple.Simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default language: java

WARNING: COMPSs Properties file is null. Setting default values

[(799) API] - Deploying COMPSs Runtime v<version>

[(801) API] - Starting COMPSs Runtime v<version>

[(801) API] - 1Initializing components

[(1290) API] - Ready to process tasks

[(1293) API] - Opening /home/compss/tutorial_apps/java/simple/jar/counter in mode OUT
[(1338) API] - File target Location: /home/compss/tutorial_apps/java/simple/jar/counter
Initial counter value is 1

[(1340) API] - Creating task from method increment in simple.SimpleImpl
[(1340) APTI] - There is 1 parameter

[(1341) API] - Parameter 1 has type FILE_T

Final counter value is 2

[(4307) API] - No more tasks for app 1

[(4311) API] - Getting Result Files 1

[(4340) API] - Stop IT reached

[(4344) API] - Stopping Graph generation...

[(4344) API] - Stopping Monitor...

[(6347) API] - Stopping AP...

[(6348) API] - Stopping TD...

[(6509) API] - Stopping Comm...

[(6510) API] - Runtime stopped

[(6510) API] - Execution Finished

compss@bsc:~$ cd .COMPSs/
compssf@bsc:~/.COMPSsS tree

=

jobl_NEW.err
jobl_NEW.out

complete_graph.dot
COMPSs_state.xml
current_graph.dot

resources.log
runtime. log

Figure 22: Logs generated by the Simple java application with the monitoring flag enabled

192 Chapter 6. Tools

COMPSs Documentation, 3.0

6.2.3 Graphical Interface features

In this section we provide a summary of the COMPSs Monitor supported features available through the graphical
interface:

Resources information Provides information about the resources used by the application

Tasks information Provides information about the tasks definition used by the application

Current tasks graph Shows the tasks dependency graph currently stored into the COMPSs Runtime

Complete tasks graph Shows the complete tasks dependecy graph of the application

Load chart Shows different dynamic charts representing the evolution over time of the resources load and

the tasks load

e Runtime log Shows the runtime log

e Execution Information Shows specific job information allowing users to easily select failed or uncompleted
jobs

e Statistics Shows application statistics such as the accumulated cloud cost.

Important: To enable all the COMPSs Monitor features applications must run with the -m flag.

The webpage also allows users to configure some performance parameters of the monitoring service by accessing
the Configuration button at the top-right corner of the web page.

For specific COMPSs Monitor feature configuration please check our FAQ section at the top-right corner of the
web page.

6.3 Tracing

COMPSs is instrumented with EXTRAE, which enables to produce PARAVER traces for performance profiling.

This section is intended to walk you through the tracing of your COMPSs applications in order to analyse the
performance with great detail.

6.3.1 COMPSs applications tracing

COMPSs Runtime has a built-in instrumentation system to generate post-execution tracefiles of the applications’
execution. The tracefiles contain different events representing the COMPSs master state, the tasks’ execution
state, and the data transfers (transfers’ information is only available when using NIO adaptor), and are useful for
both visual and numerical performance analysis and diagnosis. The instrumentation process essentially intercepts
and logs different events, so it adds overhead to the execution time of the application.

The tracing system uses Extrae! to generate tracefiles of the execution that, in turn, can be visualized with
Paraver?. Both tools are developed and maintained by the Performance Tools team of the BSC and are available
on its web page http://www.bsc.es/computer-sciences/performance-tools.

Extrae keeps track of the events in an intermediate format file (with .mpit extension). At the end of the execution,
all these files can bee gathered and merged with Extrae’s mpi2prv command to create the final tracefile, a Paraver
format file (.prv). See the Visualization Section for further information about the Paraver tool.

For further information about Extrae, please visit the following site: http://www.bsc.es/computer-science/extrae

When tracing is enabled, Extrae instruments computing threads and some resources management operations to
provide information about tasks’ executions, data transfers, and, if PAPI is available (see PAPI: Hardware Counters
for more info), hardware counters.

1 For more information: https://www.bsc.es/computer-sciences,/extrae
2 For more information: https://www.bsc.es/computer-sciences/performance-tools/paraver

6.3. Tracing 193

http://www.bsc.es/computer-sciences/performance-tools
http://www.bsc.es/computer-science/extrae
https://www.bsc.es/computer-sciences/extrae
https://www.bsc.es/computer-sciences/performance-tools/paraver

COMPSs Documentation, 3.0

6.3.1.1 Activate Tracing

By default, the tracing is disabled for any COMPSs execution. However, all the scripts that start a COMPSs
excution (runcompss, enqueue_compss and compss_agent_start) have an option to activate the tracing for that
the execution. The user activates it by providing one of the following arguments to the corresponding script.

o -t
e --tracing
e --tracing=true

Example:

$ runcompss --tracing application_name application_args

When tracing is activated, Extrae generates additional output to help the user ensure that instrumentation is
turned on and working without issues. This output contains diverse information about the tracing system as
shown in the following example and its running. Extrae version used (VERSION will be replaced by the actual num-
ber during executions), the XML configuration file used (/opt/COMPSs/Runtime/configuration/xml/tracing/
extrae_basic.xml — if using python, the extrae_python_worker.xml located in the same folder will be used in
the workers), the amount of threads instrumented (objects through 1.1.1 to 1.2.7), available hardware counters
(PAPI_TOT_INS (0x80000032) ... PAPI_L3_TCM (0x80000008)) or the name of the generated tracefile (./trace/
kmeans.py_compss.prv). When debug is activated, the log of each worker also contains the Extrae initialization
information.

Tip: The application used for this example is Kmeans. The trace generated by this execution is depicted in
Figure 23.

$ runcompss --tracing --generate_trace=false kmeans.py -n 102400000 -f 8 -d 3 -c¢c 8 -i 10

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

Welcome to Extrae 3.8.3

Extrae: Parsing the configuration file (/home/user/.COMPSs/kmeans.py_01/cfgfiles/extrae.xml)
—begins

Extrae: Warning! <trace> tag has no <home> property defined.

Extrae: Generating intermediate files for Paraver traces.

Extrae: PAPI domain set to ALL for HWC set 1

Extrae: HWC set 1 contains following counters < PAPI_TOT_INS (0x80000032) PAPI_TOT_CYC,

— (0x8000003b) PAPI_L1_DCM (0x80000000) PAPI_L2_DCM (0x80000002) PAPI_L3_TCM (0x80000008)
—PAPI_BR_INS (0x80000037) PAPI_BR_MSP (0x8000002e) RESOURCE_STALLS (0x4000002e) > - nevery
—changes

Extrae: Tracing buffer can hold 100000 events

Extrae: Circular buffer disabled.

Extrae: Warning! <input-output> tag will be ignored. This library does not support,
—instrumenting I/0 calls.

Extrae: Dynamic memory instrumentation is disabled.

Extrae: Basic I/0 memory instrumentation is disabled.

Extrae: System calls instrumentation is disabled.

Extrae: Parsing the configuration file (/home/user/.COMPSs/kmeans.py_01/cfgfiles/extrae.xml)
—has ended

Extrae: Intermediate traces will be stored in /home/user/.COMPSs/kmeans.py_O1/trace

(continues on next page)

194 Chapter 6. Tools

COMPSs Documentation, 3.0

(continued from previous page)

Extrae: Tracing mode is set to: Detail.

Extrae: Error! Hardware counter PAPI_TOT_INS (0x80000032) cannot be added in set 1 (task 0,
—thread 0)

Extrae: Error! Hardware counter PAPI_TOT_CYC (0x8000003b) cannot be added in set 1 (task 0,
—thread 0)

Extrae: Error! Hardware counter PAPI_L1_DCM (0x80000000) cannot be added in set 1 (task 0,
—thread 0)

Extrae: Error! Hardware counter PAPI_L2_DCM (0x80000002) cannot be added in set 1 (task O,
—thread 0)

Extrae: Error! Hardware counter PAPI_L3_TCM (0x80000008) cannot be added in set 1 (task O,
—thread 0)

Extrae: Error! Hardware counter PAPI_BR_INS (0x80000037) cannot be added in set 1 (task O,
—thread 0)

Extrae: Error! Hardware counter PAPI_BR_MSP (0x8000002e) cannot be added in set 1 (task O,
—thread 0)

Extrae: Error! Hardware counter RESOURCE_STALLS (0x4000002e) cannot be added in set 1 (task O,
< thread 0)

Extrae: Error when setting domain for eventset 1

Extrae: PAPI_start failed to start eventset 1 on thread 0! (error = -1)

Extrae: Successfully initiated with 1 tasks and 1 threads

WARNING: COMPSs Properties file is null. Setting default values
[(732) API] - Starting COMPSs Runtime v2.10.rc2205 (build 20220525-1503.
—re74cllcbc6c248a6c5745edaf3a4a47c2c9d0cTe)

Generation/Load done

Starting kmeans

Doing iteration #1/10

Doing iteration #2/10

Doing iteration #3/10

Doing iteration #4/10

Doing iteration #5/10

Doing iteration #6/10

Doing iteration #7/10

Doing iteration #8/10

Doing iteration #9/10

Doing iteration #10/10

Ending kmeans

Initialization time: 114.582741

Kmeans time: 140.148499

Total time: 254.731240

CENTRES:
[[0.69757475
[0.54683653 0.20274669 0.2117475]
[0.24194863 0.74448094 0.75633981]

0.74511351 O
0 0
0 0
[0.21854362 0.67072938 0.23273541]
0 0
0 0
0 0
0 0

.481576111]

[0.77272546 0.68522249 0.16245965]

[0.22683962 0.23359743 0.67203863]

[0.75351606 0.73746265 0.83339847]

[0.75838884 0.23805883 0.71538748]]
Extrae: Intermediate raw trace file created : /home/user/.COMPSs/kmeans.py_O1/trace/set-0/
—TRACE@bsccs189.0000082523000000000002 . mpit

(continues on next page)

6.3. Tracing 195

COMPSs Documentation, 3.0

(continued from previous page)

Extrae: Intermediate raw trace file created : /home/user/.COMPSs/kmeans.py_O1/trace/set-0/
—TRACEQ@bsccs189.0000082523000000000001 .mpit

Extrae: Intermediate raw trace file created : /home/user/.COMPSs/kmeans.py_O01/trace/set-0/
—TRACE@bsccs189.0000082523000000000003 .mpit

Extrae: Intermediate raw trace file created : /home/user/.COMPSs/kmeans.py_O1l/trace/set-0/
—TRACEQ@bsccs189.0000082523000000000004 .mpit

Extrae: Intermediate raw trace file created : /home/user/.COMPSs/kmeans.py_O1/trace/set-0/
—TRACE@bsccs189.0000082523000000000000.mpit

Extrae: Intermediate raw sym file created : /home/user/.COMPSs/kmeans.py_01/trace/set-0/
—TRACE@bsccs189.0000082523000000000000 . sym

Extrae: Deallocating memory.

Extrae: Application has ended. Tracing has been terminated.

[(259804) API] - Execution Finished

Dismissing tracing package removal. Traces were requested but not generated.

6.3.1.2 Trace Generation

At the end of a COMPSs application execution, each node involved in the execution generates a package file
containing all the output generated by Extrae; the master node gathers all these files in the trace subfolder of the
log directory of the execution.

After that, an additional step to merge the Extrae output in these packages and merge them into as single trace
that can be opened with Paraver. This step can be done by the scripts launching COMPSs right after the execution
of the application. To enable/disable this procedure, COMPSs scripts have three additional options to control the
trace generation. The generate_trace option allows to enable disable this process. By default, it is enabled in
runcompss and compss_agent_start and disabled in enqueue_compss executions. Through the --trace_label
option, the user set the name of the resulting trace; and , with the --delete_trace_packages, the user specifies
to the script whether the packages generated by the runtime should be kept after completing the trace generation
or if they must be deleted.

For those executions where the trace was not generated by the execution script, COMPSs provides the compss_-
gentrace and enqueue_compss_gentrace scripts. As with runcompss and enqueue_compss, the compss_-
gentrace script merges the trace while enqueue_compss_gentrace enqueues a job on a queue system that will do
the same.

~/.COMPSs/kmeans.py_01/trace$ compss_gentrace --trace_name=trace
[INFO] COMPSs Paraver trace generation.
Traces:

Input folder: /home/user/.COMPSs/kmeans.py_01/trace

Output folder: /home/user/.COMPSs/kmeans.py_01/trace

Trace name: trace

Options:
Custom threads: true
Keep packages: false

Logging:
Level: off
Folder: /home/user/.COMPSs/kmeans.py_O1l/trace
merger: Output trace format is: Paraver
merger: Extrae 3.8.3
mpi2prv: Assigned nodes < bsccs189 >
mpi2prv: Assigned size per processor < <1 Mbyte >
mpi2prv: File /tmp/tmp.b9P6UYmIJ5/python/set-0/TRACEQ@bsccs189.0000082745000000000000.mpit isy,

1o = 4 4 4 4 a 1o 190 : I FaY
HUUJ CLlL 1. 1.1 UIIlIouTc UoLULSI0JI d.DDJ_&llC\.L LU LJJ_ ULTOSUL U (Continues on neXt page)

196 Chapter 6. Tools

COMPSs Documentation, 3.0

(continued from previous page)

mpi2prv:
—object
mpi2prv:
—object
mpi2prv:
—object
mpi2prv:
—object
mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:

File /tmp/tmp.b9P6UYmIJ5/python/set-0/TRACE@bsccs189.0000082747000000000000.mpit isy,
2.1.1 on node bsccsl189 assigned to processor 0

File /tmp/tmp.b9P6UYmIJ5/python/set-0/TRACE@bsccs189.0000082748000000000000.mpit isy,
3.1.1 on node bsccs189 assigned to processor 0

File /tmp/tmp.b9P6UYmIJ5/python/set-0/TRACE@bsccs189.0000082749000000000000.mpit isy,
4.1.1 on node bsccs189 assigned to processor 0O

File /tmp/tmp.b9P6UYmIJ5/python/set-0/TRACE@bsccs189.0000082750000000000000.mpit isy,
5.1.1 on node bsccsl189 assigned to processor 0

A total of 8 symbols were imported from /tmp/tmp.b9P6UYmIJ5/python/TRACE.sym file

0 function symbols imported

8 HWC counter descriptions imported

Checking for target directory existence... exists, ok!

Warning: Couldn't open /tmp/COMPSsWorker/f£83c9da7-74c1-4703-b0d5-c980823b6422/

—localhost/python/.libseqtrace-subprocess.so for reading, addresses may not be translated.

mpi2prv:

Warning: Couldn't open /tmp/COMPSsWorker/f83c9da7-74c1-4703-b0d5-c980823b6422/

—localhost/python/.libseqtrace-subprocess.so for reading, addresses may not be translated.

mpi2prv:

Warning: Couldn't open /tmp/COMPSsWorker/f83c9da7-74c1-4703-b0d5-c980823b6422/

—localhost/python/.libseqtrace-subprocess.so for reading, addresses may not be translated.

mpi2prv:

Warning: Couldn't open /tmp/COMPSsWorker/£83c9da7-74c1-4703-b0d5-c980823b6422/

—localhost/python/.libseqtrace-subprocess.so for reading, addresses may not be translated.

mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:
% 90%

mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:

mpi2prv:
—% 90%

mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:
mpi2prv:

Selected output trace format is Paraver

Stored trace format is Paraver

Searching synchronization points... done

Time Synchronization disabled.

Circular buffer enabled at tracing time? NO

Parsing intermediate files

Progress 1 of 2 ... 5}, 10% 15 20% 25% 30% 35% 40% 45% 50% 55% 60% 65}, 70% 75 80% 85
95% done

Processor 0 succeeded to translate its assigned files

Elapsed time translating files: O hours O minutes O seconds

Elapsed time sorting addresses: O hours O minutes O seconds

Generating tracefile (intermediate buffers of 1342156 events)

This process can take a while. Please, be patient.

Progress 2 of 2 ... 5} 10} 15} 20% 25% 30% 35% 40% 45% 50% 55% 60} 65}, 70% 75} 80% 85
95% done

Warning! Clock accuracy seems to be in microseconds instead of nanoseconds.
Elapsed time merge step: O hours O minutes O seconds

Resulting tracefile occupies 144040 bytes

Removing temporal files... done

Elapsed time removing temporal files: O hours O minutes O seconds

Congratulations! /home/user/.COMPSs/kmeans.py_01/trace/python//1_python_trace.prvy

—has been generated.

merger:
merger:

mpi2prv:
mpi2prv:
mpi2prv:

Output trace format is: Paraver

Extrae 3.8.3

Assigned nodes < bsccs189 >

Assigned size per processor < 1 Mbytes >

File /home/user/.COMPSs/kmeans.py_O01/trace/set-0/TRACE@bsccs189.

—0000082523000000000000.mpit is object 1.1.1 on node bsccs189 assigned to processor 0O

mpi2prv:

File /home/user/.COMPSs/kmeans.py_O1/trace/set-0/TRACE@bsccs189.

—0000082523000000000001 .mpit is object 1.1.2 on node bsccsl189 assigned to processor 0O

mpi2prv:

File /home/user/.COMPSs/kmeans.py_O1/trace/set-0/TRACE@bsccs189.

—0000082523000000000002.mpit is object 1.1.3 on node bsccsl89 assigned to processor 0O

mpi2prv:

File /home/user/.COMPSs/kmeans.py_01/trace/set-0/TRACE@bsccs189.

—0000082523000000000003 .mpit is object 1.1.4 on node bsccs189 assigned to processor 0O

mpi2prv:

File /home/user/.COMPSs/kmeans.py_O1/trace/set-0/TRACE@bsccs189.

—0000082523000000000004 .mpit is object 1.1.5 on node bsccsl189 assigned to processor 0O

(continues on next page)

6.3. Tracing 197

COMPSs Documentation, 3.0

(continued from previous page)

mpi2prv: File set-0/TRACE@bsccs189.

—bsccs189 assigned to processor 0

mpi2prv: File set-0/TRACE@bsccs189.

—bsccs189 assigned to processor 0O

mpi2prv: File set-0/TRACE@bsccs189.

—bsccs189 assigned to processor 0O

mpi2prv: File set-0/TRACE@bsccs189.

—bsccs189 assigned to processor 0O

mpi2prv: File set-0/TRACE@bsccs189.

—bsccsl189 assigned to processor 0

mpi2prv: File set-0/TRACE@bsccs189.

—bsccs189 assigned to processor 0O
mpi2prv: A total of 8 symbols were
—sym file

0000082653000001000000.

0000082653000001000001

0000082653000001000002.

0000082653000001000003

0000082653000001000004 .
0000082653000001000005.

imported from /home/user/.COMPSs/kmeans.

mpi2prv: O function symbols imported
mpi2prv: 8 HWC counter descriptions imported

mpit

.mpit

mpit

.mpit

mpit

mpit

is

is

is

is

is

is

object
object
object
object
object

object

1

.2.1 on node

.2.2 on node

.2.3 on nodey

.2.4 on node

.2.5 on node,

.2.6 on nodey

py_O1/trace/TRACE.

mpi2prv: Checking for target directory existence... exists, ok!

mpi2prv: Selected output trace format is Paraver

mpi2prv: Stored trace format is Paraver

mpi2prv: Searching synchronization points... done

mpi2prv: Time Synchronization disabled.

mpi2prv: Circular buffer enabled at tracing time? NO

mpi2prv: Parsing intermediate files

mpi2prv: Progress 1 of 2 ... 5% 10% 15% 20% 25}, 30% 35% 407 45% 50% 55} 60% 65% 70% 75% 80% 85

—% 90% 95% done

mpi2prv: Processor O succeeded to translate its assigned files
mpi2prv: Elapsed time translating files: O hours O minutes O seconds
mpi2prv: Elapsed time sorting addresses: O hours O minutes O seconds
mpi2prv: Generating tracefile (intermediate buffers of 610071 events)

This process can take a while. Please, be patient.
mpi2prv: Progress 2 of 2 ... 5% 10% 15% 20% 25}, 30% 35% 407 45% 50% 55}, 60% 65% 70% 75% 80% 85

<% 90% 95% done

mpi2prv: Warning! Clock accuracy seems to be in microseconds instead of nanoseconds.
mpi2prv: Elapsed time merge step: O hours O minutes O seconds
mpi2prv: Resulting tracefile occupies 327879 bytes

mpi2prv: Removing temporal files...

done

mpi2prv: Elapsed time removing temporal files: O hours O minutes O seconds
mpi2prv: Congratulations! /home/user/.COMPSs/kmeans.py_01/trace//trace.prv has been generated.

6.3.1.3 Information Available

Tracefiles contain three kinds of information:

Events Marking diverse situations such as the runtime start, tasks’ execution or synchronization points.
Communications Showing the transfers and requests of the parameters needed by COMPSs tasks.
Hardware counters Of the execution obtained with Performance API (see PAPI: Hardware Counters)

198

Chapter 6. Tools

COMPSs Documentation, 3.0

6.3.1.4 Custom Threads

Although Paraver traces illustrate the events, communications and HW counters for each Thread and processor in
the system, it is hard to identify what thread is performing each operation.

Currently, traces can show these threads:

e Master node / Agent
— Application’s main thread
— Access Processor
— Task Dispatcher
File System (High priority)
— File System (Low priority)
— Timer
— Wall Clock
— Threads available for computing (executors)
e Worker node
— Worker main thread
Worker File System (High priority)
— Worker File System (Low priority)
— Worker timer
— Threads available for computing (executors)

To ease the identification of each thread, all trace-generating scripts allow an option (custom_threads) that
triggers a post-processing of the resulting trace to identify which thread corresponds to each runtime component
and sort them as runtime thread or threads available to run tasks (executors). By default, this additional step is
enabled in all trace-generating scripts.

6.3.1.5 Trace Example

Figure 23 is a tracefile generated by the execution of a k-means clustering algorithm. Each timeline contains
information of a different resource, and each event’s name is on the legend. Depending on the number of computing
threads specified for each worker, the number of timelines varies. However the following threads are always shown:

Master - Thread 1.1.1 This timeline shows the actions performed by the main thread of the COMPSs applica-
tion

Access Processor - Thread 1.1.2 All the events related to the tasks’ parameters management, such as depen-
dencies or transfers are shown in this thread.

Task Dispatcher - Thread 1.1.3 Shows information about the state and scheduling of the tasks to be executed.

Worker X Master - Thread X.1.1 This thread is the master of each worker and handles the computing re-
sources and transfers. It is repeated for each available resource. All data events of the worker, such as
requests, transfers and receives are marked on this timeline (when using the appropriate configurations).

Worker X File system - Thread X.1.2 This thread manages the synchronous file system operations (e.g. copy
file) performed by the worker.

Worker X Timer - Thread X.1.3 This thread manages the cancellation of the tasks when the wall-clock limit
is reached.

Worker X Executor Y - Thread X.2.Y Shows the actual tasks execution information and is repeated as many
times as computing threads has the worker X

6.3. Tracing 199

COMPSs Documentation, 3.0

What/Where Timing Colors
Custom palette
Start

M stop
Barrier
Waiting for open file

M 7ask Running
Delete File
Access Processor: Analyse task

[l Access Processor: Update graph

[Access Processor: Register data access
Access Processor: Finish access to file
Task Dispatcher: Action update

[l ask Dispatcher: Execute tasks

[l sk Dispatcher: Shutdown
Worker: Creating task sandbox
Remove Obsoletes

[l sind original File names To Renames.
Check OUT parameters.

[l it Thread for synch file system operations

Figure 23: tracefile for a k-means algorithm visualized with compss runtime.cfg

6.3.1.6 Trace for Agents

Applications deployed as COMPSs Agents can also be traced. Unlike master-worker COMPSs applications, where
the trace contains the events for all the nodes within the infrastructure, with the Agents approach, each Agent
generates its own trace.

To activate the tracing the compss_agent_start command allows the -t, --tracing and --tracing=<level>
options with the same meaning as with the master-worker approach. For example:

$ compss_agent_start \
--hostname="COMPSsWorker01" \
--pythonpath=""/python/path" \
--log_dir=""/agent1/log" \
--rest_port="46101" \
--comm_port="46102" \
-d -t \
--project=""/project.xml" \
--resources=""/resources.xml"&

Upon the completion of an operation submitted with the --stop flag, the agent stops and generates a trace folder
within his log folder, containing the prv, pcf and row files.

$ compss_agent_call_operation" \
--lang="PYTHON" \
--master_node="127.0.0.1" \
--master_port="46101" \
--method_name="kmeans" \
--stop \
"kmeans"

When multiple agents are involved in an application’s execution, the stop command must be forwarded to all the
other agents with the --forward parameter.

200 Chapter 6. Tools

COMPSs Documentation, 3.0

$ compss_agent_call_operation" \
--lang="PYTHON" \
--master_node="127.0.0.1" \
--master_port="46101" \
--method_name="kmeans" \
--stop \
--forward_to="COMPSsWorker02:46201; COMPSsWorker03:46301" \
"kmeans"

Upon the completion of the last operation submitted and the shutdown of all involved agents, all agent will have
generated their own individual trace.

In order to merge this traces the script compss_agent_merge_traces can be used. The script takes as parameters
the folders of the log dirs of the agents with the traces to merge.

$ compss_agent_merge_traces -h
/opt/COMPSs/Runtime/scripts/user/compss_agent_merge_traces <options> <log_dirl> <log_dir2>
—~<log_dir3>

Merges the traces of the specified agents into a new trace created at the directory <output_
—dir>

options:
-h/--help shows this message

--output_dir=<output_dir> the directory where to store the,
—merged traces

-f/--force_override overrides output_dir if it already,
—exists without asking

--result_trace_name=<result_trace_name> the name of the generated trace

Usage example:

$ compss_agent_merge_traces \
--result_trace_name=merged_kmeans \

(continues on next page)

6.3. Tracing 201

COMPSs Documentation, 3.0

(continued from previous page)

~/.COMPSs/lagent_python3_01/agentl \
~/.COMPSs/lagent_python3_01/agent2 \
~/.COMPSs/1lagent_python3_01/agent3

The script will put the merged trace in the specified output_dir or in the current directory inside a folder named
compss_agent_merge_traces by default

6.3.1.7 Custom Installation and Configuration

Custom Extrae

COMPSs uses the environment variable EXTRAE_HOME to get the reference to its installation directory (by default:
/opt/COMPSs/Dependencies/extrae). However, if the variable is already defined once the runtime is started,
COMPSs will not override it. User can take advantage of this fact in order to use custom extrae installations. Just
set the EXTRAE_HOME environment variable to the directory where your custom package is, and make sure that it
is also set for the worker’s environment. Be aware that using different Extrae packages can break the runtime and
executions so you may change it at your own risk.

Custom Configuration file

COMPSs offers the possibility to specify an extrae custom configuration file in order to harness all the tracing
capabilities further tailoring which information about the execution is displayed (except for Python workers). To
do so just indicate the file as an execution parameter as follows:

--extrae_config_file=/path/to/config/file.xml

In addition, there is also the possibility to specify an extrae custom configuration file for the Python workers as
follows:

--extrae_config_file_python=/path/to/config/file_python.xml

The configuration files must be in a shared disk between all COMPSs workers because a file’s copy is not distributed
among them, just the path to that file.

Tip: The default configuration files are in:

202 Chapter 6. Tools

COMPSs Documentation, 3.0

e ${COMPSS_HOME}/Runtime/configuration/xml/tracing/extrae_basic.xml
e ${COMPSS_HOME}/Runtime/configuration/xml/tracing/extrae_python_worker.xml (when using
Python)

The can be taken as base for customization.

Two aspects that configuration files allow to customize are the directories that Extrae will use as working directory
and where it leaves the final mpit files. By default, COMPSs configures extrae to leave the traces within the trace
sub-directory within the execution log directory. to replicate this behaviour, custom configuration files can use
the {{TRACE_OUTPUT_DIR}} term on the temporal-directory and final-directory attributes of the configuration. At
runtime, this term will be replaced by the actual log dir.

6.3.2 Visualization

Paraver is the BSC tool for trace visualization. Trace events are encoded in Paraver format (.prv) by the Extrae
tool. Paraver is a powerful tool and allows users to show many views of the trace data using different configuration
files. Users can manually load, edit or create configuration files to obtain different tracing views.

The following subsections explain how to load a trace file into Paraver, open the task events view using an already
predefined configuration file, and how to adjust the view to display the data properly.

For further information about Paraver, please visit the following site:

http://www.bsc.es/computer-sciences /performance-tools /paraver

6.3.2.1 Trace Loading

The final trace file in Paraver format (.prv) is at the base log folder of the application execution inside the trace
folder. The fastest way to open it is calling the Paraver binary directly using the tracefile name as the argument.

$ wxparaver /path/to/trace/trace.prv

Tip: The path where the traces are usually located is ${HOME}/.COMPSs/<APPLICATION_NAME_INFO>/trace/.

Where <APPLICATION NAME INFO> represents the executed application name and some information, such
as the execution number or deployment information (e.g. number of nodes) and the generation time.

6.3.2.2 Configurations

To see the different events, counters and communications that the runtime generates, diverse configurations are
available with the COMPSs installation. To open one of them, go to the “Load Configuration” option in the
main window and select “File”. The configuration files are under the following path for the default installation
/opt/COMPSs/Dependencies/paraver/cfgs/. A detailed list of all the available configurations can be found in
Paraver: configurations.

The following guide uses a kmeans trace (result from executing the Kmeans sample code with the --tracing flag.)
with the compss_ tasks.cfg configuration file as an example to illustrate the basic usage of Paraver. After accepting
the load of the configuration file, another window appears showing the view. Figure 24 and Figure 25 show an
example of this process.

Caution: In a Paraver view, a red exclamation sign may appear in the bottom-left corner. This means that
some event values are not being shown (because they are out of the current view scope), so little adjustments
must be made to view the trace correctly:

e Fit window: modifies the view scope to fit and display all the events in the current window.
— Right click on the trace window

6.3. Tracing 203

http://www.bsc.es/computer-sciences/performance-tools/paraver

COMPSs Documentation, 3.0

File Hints Help
ORE X & @
Werkepaces
Useful+PAPI counters+Resources+Flush
Window browser
kmeans.py_compss.prv v

Files & Window Properties
=
T
~ Bopt
~ B compss
> B Bindings
~ [Dependencies
> M extrae
> P java_GAT
~ B paraver
Al =|
> B comm
> B python
= 2dp_runtime_state.cfg

= 2dp_tasks.cfg

Paraver files v

Automatic Redraw Force Redraw

Figure 24: Paraver menu

COMPSs Tasks @ kmeans.py_compss.prv

AP

TIME AP

Figure 25: Kmeans Trace file

204

Chapter 6. Tools

COMPSs Documentation, 3.0

— Choose the option Fit Semantic Scale / Fit Both

6.3.2.3 View Adjustment

e View Event Flags: marks with a green flag all the emitted events.
— Right click on the trace window
— Chose the option View / Event Flags

COMPSs Tasks @ kmeans.py_compss.prv

Copy Ctrl+C

Clone

Rename F2

O Fit Time Scale

Fit Semantic Scale >
Fit Objects
Select Objects...
Communication Lines

Paint As >

O N
Drawmode >
Pixel Size >
Object Labels >
Object Axis >
Run >
Synchronize >
Save >
Timing Ctri+T

Info Panel

Figure 26: Paraver view adjustment: View Event Flags

e Show Info Panel: display the information panel. In the tab “Colors” we can see the legend of the colors shown
in the view.
— Right click on the trace window
— Check the Info Panel option
— Select the Colors tab in the panel

e Zoom: explore the tracefile more in-depth by zooming into the most relevant sections.
— Select a region in the trace window to see that region in detail
— Repeat the previous step as many times as needed
— The undo-zoom option is in the right click panel

6.3. Tracing 205

COMPSs Documentation, 3.0

Copy Ctri+C

What/Where Timing Colors

Custom palette Clone
B generate_fragment Rename F2
partial_sum
M merge o
O Fit Time Scale
Fit Semantic Scale >
Fit Objects
Select Objects...
View >
Paint As >
Drawmode >
Pixel Size >
Object Labels >
Object Axis >
Run >
Synchronize >
Save >
Timing Ctrl+T
O [N

Figure 27: Paraver view adjustment: Show info panel

COMPSs Tasks

169,285,160 us - 114,802,565 us

Figure 28: Paraver view adjustment: Zoom configuration

COMPSs Tasks

NTIME / €
IME TD
AL

Figure 29: Paraver view adjustment: Zoom result

206 Chapter 6. Tools

COMPSs Documentation, 3.0

6.3.3 Interpretation

This section explains how to interpret a trace view once it has been adjusted as described in the previous section.

e The trace view has on its horizontal axis the execution time and on the vertical axis one line for the master
at the top, and below it, one line for each of the workers.

e In a line, the black color is associated with an idle state, i.e. there is no event at that time.

e Whenever an event starts or ends a flag is shown.

e In the middle of an event, the line shows a different color. Colors are assigned depending on the event type.

e The info panel contains the legend of the assigned colors to each event type.

COMPSs Tasks @ kmeans.py_compss.prv

What /Where Timing Colors
Custom palette
. generate_fragment

partial_sum

. merge

Figure 30: Trace interpretation

6.3.4 Analysis

This section gives some tips to analyze a COMPSs trace from two different points of view: graphically and
numerically.

6.3.4.1 Graphical Analysis

The main concept is that computational events, the task events in this case, must be well distributed among all
workers to have a good parallelism, and the duration of task events should be also balanced, this means, the
duration of computational bursts.

In the previous trace view, all the tasks of type “generate fragment” in dark blue appear to be well distributed
among the four workers, each worker executor executes two “generate fragment” tasks.

Next, a set of “partial sum” tasks, coloured in white, are distributed across the four workers. In particular, eight
“partial sum” tasks are executed per kmeans iteration, so each worker executor executes two “partial sum” tasks
per iteration. This trace shows the execution of ten iterations. Note that all “partial sum” tasks are very similar
in time. This means that there is not much variability among them, and consequently not imbalance.

Finally, there is a “merge” task at the end of each iteration (coloured in red). This task is executed by one of the
worker executors, and gathers the result from the previous eight “partial sum” tasks. This task can be better
displayed thanks to zoom.

6.3. Tracing 207

COMPSs Documentation, 3.0

What /Where Timing Colors

Custom palette
. generate_fragment

partial_surm

. merge

Figure 31: Basic trace view of a Kmeans execution.

-]
00000000
S
L 2
yer ot
L
,,7,-"i:
@
L 2
s e
L 2
: :’?’f‘;“.f
L 7
&
&
ST "“
L 2
ere T
&

COMPSs Tasks @ kmeans.py_com,

Figure 33: Zoomed in view of a Kmeans execution (first iteration).

208

Chapter 6. Tools

COMPSs Documentation, 3.0

6.3.4.2 Numerical Analysis

Here we analize the Kmeans trace numerically.

COMPSs Tasks @ kmeans.py_comp:
ror

Ipart'\‘al’sm —
Copy Ctrl+C

Clone

Rename F2

O Fit Time Scale

Fit Semantic Scale >

Fit Objects
Select Objects...
Communication Lines
Paint A >
aint As O ‘
Drawmode >
Pixel Size »
Object Labels >
Object Axis >
Run >
Synchronize >
Save >
Timing Ctri+T

Info Panel

Figure 34: Original sample trace of a Kmeans execution to be analyzed

Paraver offers the possibility of having different histograms of the trace events. Click the “New Histogram” button
in the main window and accept the default options in the “New Histogram” window that will appear.

l_3© X &

Figure 35: Paraver Menu - New Histogram

After that, the following table is shown. In this case for each worker, the time spent executing each type of task is
shown in gradient from light green for lower values to dark-blue for higher ones. The values coresponding to the
colours and task names can be shown by clicking in the gray magnifying glass button. And the task corresponding
to each task column can also be shown by clicking in the colur bars button.

The time spent executing each type of task is shown, and task names appear in the same color than in the trace
view. The color of the cells in a row is kept, conforming a color based histogram.

The previous table also gives, at the end of each column, some extra statistical information for each type of tasks
(as the total, average, maximum or minimum values, etc.).

In the window properties of the main window (Button Figure 39), it is possible to change the semantic of the
statistics to see other factors rather than the time, for example, the number of bursts (Figure 40).

In the same way as before, the following table shows for each worker the number of bursts for each type of task,
this is, the number or tasks executed of each type. Notice the gradient scale from light-green to dark-blue changes
with the new values.

6.3. Tracing 209

COMPSs Documentation,

3.0

Figure 36: Histogram configuration (Accept default values)

Figure 37: Kmeans histogram corresponding to previous trace

Figure 38: Kmeans numerical histogram corresponding to previous trace

Timeline Selection

Control Timeline

Data Timeline

3D Timeline

Timne Range

Begin

COMPSS Tasks

COMPSS Tasks

None

(@) current Timeline

AllTrace

() Manual selection

Auto Fit

© cancelar| |/ Aceptag

3

partial_sum

IE B8 O & M HBMMNAEI% .befaul v 2

MAIN APP (1.1.1)
RUNTIMEAP (1.1.2)
RUNTIMETD (1.1.3)

WORKER MAIN (2.1.1)
RUNTIMEFS (2.1.2)
RUNTIME TIMER (2.1.3)
EXECUTOR (2.2.1)
EXECUTOR (2.2.2)
EXECUTOR (2.2.3)
EXECUTOR (2.2.4)

Total

Average

Maximum

Minimum
StDev

Avg/Max

187,176,261 us
37,435,252.20 us
48,012,074 us
12,465 us
18,726,630.08 us
078

445,527,280 us

696,977 us
89,105,456 us 348,488.50 us

113,531,033us 608,829Us
62,958 us 88,148 us
44,535,380.06 us 260,340.50 us
0.78 057

generate_fragment

210

Chapter 6. Tools

COMPSs Documentation,

3.0

X

File Hints Help

= &

Works paces

X & B

Useful+PAPI counters +Resources+Flush

Window browser

kmeans.py_compss.prv

—Im= COoMPss Tasks

B New Histogram #1

Files & Window Properties

= [

Window Properties
~ B opt
~ B compss I

> B3 Bindings
~ ™ Dependencies
> M extrae
> B java_GAT
~ B paraver
A ll=| cfgs
> B comm
> B python

2dp_runtime_state.cfg

2dp_tasks.cfg

Paraver files hd

[H9) Automnatic Redraw Force Redraw

Figure 39: Paraver window properties button

6.3. Tracing

211

COMPSs Documentation,

3.0

Figure 41: Kmeans histogram with the number of bursts

Figure 40: Paraver histogram options menu

File Hints Help

DRE X & @

Workspaces

Useful+PAPI counters+Resources+Hush

Window browser

kmeans.py_compss.prv

= COMPSs Tasks

MNew Histogram #1

Files & Window Properties

Statistic Time

(==} @
Name New Histogram #1
Begin time 0.00us
End time 180,438,447.00 us
Control
B statistics
Type Semantic

<

Minimum Gradient | Time

Maximum Gradient | % Time

% # Bursts

Integral

Maximum

Minimum

€ B3 Q& W HMNAIK

MAIN APP (1.1.1)

RUNTIME AP (1.1.2)

RUNTIME TD (1.1.3) o

WORKER MAIN (2.1.1)

RUNTIMEFS (2.1.2)
RUNTIME TIMER (2.1.3)
EXECUTOR (2.2.1)
EXECUTOR (2.2.2)
EXECUTOR (2.2.3)
EXECUTOR (2.2.4)

Total 16
Average 320
Maximum 8
Minimum 2

StDev 2.40
Avg/Max 0.40

Data % Time Not Zero
% Window Time

@ AutomaticRedraw | Average value

Average Burst Time
Stdev Burst Time
Average per Burst
Average value!'=0
Average per Burst!= 0

#Bursts!=0

b Default

partial_sum m
T

20
10
10
10

generate_fragment

212

Chapter 6. Tools

COMPSs Documentation, 3.0

6.3.5 PAPI: Hardware Counters

The applications instrumentation supports hardware counters through the performance API (PAPI). In order to
use it, PAPI needs to be present on the machine before installing COMPSs.

During COMPSs installation it is possible to check if PAPI has been detected in the Extrae config report:

Package configuration for Extrae VERSION based on extrae/trunk rev. XXXX:
Installation prefix: /opt/COMPSs/Dependencies/extrae
Cross compilation: no

Performance counters: yes
Performance API: PAPI
PAPI home: /usr
Sampling support: yes

Caution: PAPI detection is only performed in the machine where COMPSs is installed. User is responsible
of providing a valid PAPT installation to the worker machines to be used (if they are different from the master),
otherwise workers will crash because of the missing libpapi.so.

PAPI installation and requirements depend on the OS. On Ubuntu 14.04 it is available under papi-tools package;
on OpenSuse libpapi, papi and papi-devel packages. For more information check https://icl.cs.utk.edu/projects/
papi/wiki/Installing PAPI.

Extrae only supports 8 active hardware counters at the same time. Both basic and advanced mode have the same
default counters list:

PAPI_TOT INS Instructions completed

PAPI _TOT_ CYC Total cycles

PAPI_LD_ INS Load instructions

PAPI_SR_INS Store instructions

PAPI BR_ UCN Unconditional branch instructions

PAPI _BR_CN Conditional branch instructions

PAPI_VEC_SP Single precision vector/SIMD instructions
RESOURCE_STALLS Cycles Allocation is stalled due to Resource Related reason

The XML config file contains a secondary set of counters. In order to activate it just change the starting-set-
distribution from 2 to 1 under the cpu tag. The second set provides the following information:

PAPI_TOT INS Instructions completed
PAPI _TOT_ CYC Total cycles
PAPI L1 DCM Level 1 data cache misses
PAPI L2 DCM Level 2 data cache misses
PAPI L3 TCM Level 3 cache misses
PAPI_FP _INS Floating point instructions

Tip: To find the available PAPI counters on a given computer issue the command:

$ papi_avail -a

And for more hardware counters:

$ papi_native_avail

6.3. Tracing 213

https://icl.cs.utk.edu/projects/papi/wiki/Installing_PAPI
https://icl.cs.utk.edu/projects/papi/wiki/Installing_PAPI

COMPSs Documentation, 3.0

To further customize the tracked counters, modify the XML to suit your needs. For more information about
Extrae’s XML configuration refer to https://www.bsc.es/computer-sciences/performance-tools/trace-generation /

extrae/extrae-user-guide.

6.3.6 Paraver: configurations

Table 18, Table 19 and Table 20 provide information about the different pre-build configurations that are distributed
with COMPSs and that can be found under the /opt/COMPSs/Dependencies/ paraver/cfgs/ folder. The cfgs
folder contains all the basic views, the python folder contains the configurations for Python events, and finally the
comm folder contains the configurations related to communications.

Additionally, it can be shown the data transfers and the task dependencies. To see them it is needed to show
communication lines in the paraver windows, to only see the task dependencies are needed to put in Filter >
Communications > Comm size, the size equal to 0. Some of the dependencies between tasks may be lost.

Table 18: General paraver configurations for COMPSs Applications

Configuration File Name Description Targ
2dp runtime state.cfg 2D plot of runtime state Run
2dp _tasks.cfg 2D plot of tasks duration App
3dh duration runtime.cfg 3D Histogram of runtime execution Run
3dh_duration tasks.cfg 3D Histogram of tasks duration App
compss__cpu__constraints.cfg Shows tasks cpu constraints Run
compss__executors.cfg Shows the number of executor threads in each node Run
compss_runtime.cfg Shows COMPSs Runtime events (master and workers) Run
compss_runtime master.cfg Shows COMPSs Runtime master events Run
compss_ storage.cfg Shows COMPSs persistent storage events Run
compss_tasks and runtime.cfg Shows COMPSs Runtime events (master and workers) and tasks execution | App
compss__tasks.cfg Shows tasks execution and tasks instantiation in master nodes App
compss_tasks communications.cfg Shows tasks and communications App
compss_tasks cpu_ affinity.cfg Shows tasks CPU affinity App
compss_tasks dependencies.cfg Shows tasks and dependencies (only for the master node) App
compss_tasks gpu_ affinity.cfg Shows tasks GPU affinity App
compss__tasks id.cfg Shows tasks execution by task id App
compss_tasks runtime & agents.cfg | Shows COMPSs Agent and Runtime events and tasks execution App
compss_ waiting tasks.cfg Shows waiting tasks Run
histograms HW _counters.cfg Shows hardware counters histograms Botl
instantiation time.cfg Shows the instantiation time Run
Interval between runtime.cfg Interval between runtime events Run
nb _executing tasks.cfg Number of executing tasks App
nb_requested cpus.cfg Number of requested CPUs Run
nb_requested disk bw.cfg Number of requested disk bandwidth Run
nb_requested gpus.cfg Number of requested GPUs Run
nb_executing mem.cfg Number of executing memory Run
number__executors.cfg Number of executors Run
task duration.cfg Shows tasks duration App
thread cpu.cfg Shows the initial executing CPU Run
thread identifiers.cfg Shows the type of each thread Run
time btw_tasks.cfg Shows the time between tasks Run
user _events.cfg Shows the user events (type 9100000) App

214

Chapter 6. Tools

https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide
https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide

COMPSs Documentation, 3.0

Table 19: Available paraver configurations for Python events of

COMPSs Applications
Configuration File Name Description Target
3dh_duration runtime - 3D Histogram of runtime events of python in master node Python
master _binding.cfg Binding
3dh_events inside - 3D Histogram of python events Python
task.cfg Binding
3dh tasks phase.cfg 3D Histogram of execution functions Python
Binding
compss_runtime master - | Shows runtime events of python in master node Python
binding.cfg Binding
deserialization object - Shows the numbers of the objects that are being deserialized Python
number.cfg Binding
deserialization _size.cfg Shows the size of the objects that are being deserialized (Bytes) Python
Binding
events _inside tasks.cfg Events showing python information such as user function execution | Python
time, modules imports, or serializations Binding
events _in_workers.cfg Events showing python binding information in worker Python
Binding
nb_user code execut- Number of user code executing Python
ing.cfg Binding
serdes bw.cfg Serialization and deserializations bandwidth (MB/s) Python
Binding
serdes cache bw.cfg Serialization and deserializations to cache bandwidth (MB/s) Python
Binding
serialization object num- Shows the numbers of the objects that are being serialized Python
ber.cfg Binding
serialization _size.cfg Shows the size of the objects that are being serialized (Bytes) Python
Binding
tasks cpu_ affinity.cfg Events showing the CPU affinity of the tasks (shows only the first | Python
core if multiple assigned) Binding
tasks gpu_ affinity.cfg Events showing the GPU affinity of the tasks (shows only the first | Python
GPU if multiple assigned) Binding
Time between events in- | Shows the time between events inside tasks Python
side tasks.cfg Binding
Table 20: Available paraver configurations for COMPSs Applica-
tions
Configuration File Name Description Target
communication ma- Table view of communications between each node Runtime Communi-
trix.cfg cations
compss _data trans- Shows data transfers for each task’s parameter Runtime Communi-
fers.cfg cations
compss_tasksID trans- | Task’s transfers request for each task (task with its IDs are | Runtime Communi-
fers.cfg also shown) cations
process__bandwith.cfg Send/Receive bandwith table for each node Runtime Communi-
cations
receive bandwith.cfg Receive bandwidth view for each node Runtime Communi-
cations
send _bandwith.cfg Send bandwidth view for each node Runtime Communi-
cations
sr_bandwith.cfg Send/Receive bandwith view for each node Runtime Communi-
cations
6.3. Tracing 215

COMPSs Documentation, 3.0

6.3.7 User Events in Python

Users can emit custom events inside their python tasks. Thanks to the fact that python is not a compiled language,
users can emit events inside their own tasks using the available EXTRAE instrumentation object because it is
already loaded and available in the PYTHONPATH when running with tracing enabled.

To emit an event first import pyextrae:

e import pyextrae.sequential as pyextrae to emit events from the main code.
e import pyextrae.multiprocessing as pyextrae to emit events within tasks code.

And then just use the call pyextrae.event (type, id) (or pyextrae.eventandcounters (type, id) if you also
want to emit PAPI hardware counters).

Tip: It must be used a type number higher than 8000050 in order to avoid type conflicts.

We suggest to use 9100000 since we provide the user_events.cfg configuration file to visualize the user events
of this type in PARAVER.

6.3.7.1 Events in main code

The following code snippet shows how to emit an event from the main code (or any other code which is not within
a task). In this case it is necessary to import pyextrae.sequential.

from pycompss.api.api import compss_wait_on
from pycompss.api.task import task
import pyextrae.sequential as pyextrae

Otask(returns=1)
def increment(value):
return value + 1

def main():
value = 1
pyextrae.eventandcounters (9100000, 2)
result = increment(value)
result = compss_wait_on(result)
pyextrae.eventandcounters (9100000, 0)

print("result: " + str(result))
if __name__ == "__main__":
main()

6.3.7.2 Events in task code

The following code snippet shows how to emit an event from the task code. In this case it is necessary to import
pyextrae.multiprocessing.

from pycompss.api.task import task

Otask()

def compute():
import pyextrae.multiprocessing as pyextrae
pyextrae.eventandcounters (9100000, 2)

Code to wrap within event 2

(continues on next page)

216 Chapter 6. Tools

COMPSs Documentation, 3.0

(continued from previous page)

pyextrae.eventandcounters (9100000, 0)

Caution: Please, note that the import pyextrae.multiprocessing as pyextrae is performed within the
task. If the user needs to add more events to tasks within the same module (excluding the applicatin main
module) and wants to put this import in the top of the module making pyextrae available for all of them, it
is necessary to enable the tracing hook on the tasks that emit events:

from pycompss.api.task import task
import pyextrae.multiprocessing as pyextrae

Otask(tracing_hook=True)
def compute():
pyextrae.eventandcounters (9100000, 2)

Code to wrap within event 2

pyextrae.eventandcounters (9100000, 0)

The tracing_hook is disabled by default in order to reduce the overhead introduced by tracing avoiding to
intercept all function calls within the task code.

6.3.7.3 Result trace
The events will appear automatically on the generated trace. In order to visualize them, just load the user_-
events.cfg configuration file in PARAVER.

If a different type value is choosen, take the same user_events.cfg and go to Window Properties -> Filter
-> Events -> Event Type and change the value labeled Types for your custom events type.

Tip: If you want to name the events, you will need to manually add them to the .pcf file with the corresponding
name for each value.

6.3.7.4 Practical example

Consider the following application where we define an event in the main code (1) and another within the task (2).
The increment task is invoked 8 times (with a mimic computation time of the value received as parameter.)

from pycompss.api.api import compss_wait_on
from pycompss.api.task import task
import time

Otask(returns=1)

def increment(value):
import pyextrae.multiprocessing as pyextrae
pyextrae.eventandcounters (9100000, 2)
time.sleep(value) # mimic some computation
pyextrae.eventandcounters (9100000, 0)
return value + 1

def main(Q):
import pyextrae.sequential as pyextrae
elements = [1, 2, 3, 4, 5, 6, 7, 8]

(continues on next page)

6.3. Tracing 217

COMPSs Documentation, 3.0

(continued from previous page)

results = []
pyextrae.eventandcounters (9100000, 1)
for element in elements:
results.append(increment (element))
results = compss_wait_on(results)
pyextrae.eventandcounters (9100000, 0)
print("results: " + str(results))

if __name == "__main__":

main()

After launching with tracing enabled (-t flag), the trace has been generated into the logs folder:

e $HOME/.COMPSs/events.py_01/trace if using runcompss.
e $HOME/.COMPSs/<J0OB_ID>/trace if using enqueue_compss.

Now it is time to modify the .pcf file including the folling text at the end of the file with your favourite text
editor:

EVENT_TYPE

0 9100000 User events
VALUES

0 End

1 Main code event

2 Task event

Caution: Keep value 0 with the End message.

Add all values defined in the application with a descriptive short name to ease the event identification in
PARAVER.

Open PARAVER, load the tracefile (.prv) and open the user_events.cfg configuration file. The result (see
Figure 42) shows that there are 8 “Task event” (in white), and 1 “Main code event” (in blue) as we expected. Their
length can be seen with the event flags (green flags), and measured by double clicking on the event of interest.

User events @ increment.py_compss.prv

Figure 42: User events trace file

Paraver uses by default the .pcf with the same name as the tracefile so if you add them to one, you can reuse it
just by changing its name to the tracefile.

218 Chapter 6. Tools

COMPSs Documentation, 3.0

6.4 Data Provenance

In order to achieve Reproducibility and Replicability with your experiments using COMPSs, the runtime
includes the capacity of recording details of the application’s execution, also known as Data Provenance. This is
currently only supported for Python applications, while in the meantime we are working to extend it to Java and
C/C++, which are programming languages also supported by COMPSs.

When the provenance option is activated, the runtime records every access to a file or directory in the application,
as well as its direction (IN, OUT, INOUT). In addition to this, other information such as the parameters passed as
inputs in the command line that submitted the application, its source files, workflow image and profiling statistics,
authors and their institutions, ... are also stored. All this information is later used to record the Data Provenance
of your workflow using the RO-Crate standard, and with the assistance of the ro-crate-py library. RO-Crate is
based on JSON-LD (JavaScript Object Notation for Linked Data), is much simpler than other standards and tools
created to record Provenance, and that is why it has been adopted in a number of communities. Using RO-Crate to
register the execution’s information ensures not only to register correctly the Provenance of a COMPSs application
run, but also compatibility with some existing portals that already embrace RO-Crate as their core format for
representing metadata, such as WorkflowHub.

6.4.1 Software dependencies

Provenance generation in COMPSs depends on the ro-crate-py library, thus, it must be installed before the
provenance option can be used. Depending on the target system, different options are available using pip:

If the installation is in a laptop or machine you manage, you can use the command:

compss@bsc:~$ pip install rocrate

If you do not manage the target machine, you can install the library in your own user space using:

compss@bsc:~$ pip install rocrate --user

This would typically install the library in ~/.local/. Another option is to specify the target directory with:

compss@bsc:~$ pip install -t install_path rocrate

Our implementation has been tested with ro-crate-py version 0.6.1 and earlier.

6.4.2 Previous needed information

There are certain pieces of information which must be included when registering the provenance of a workflow that
the COMPSs runtime cannot automatically infer, such as the authors of an application. For specifying all these
fields that are needed to generate an RO-Crate but cannot be automatically obtained, we have created a simple
YAML structure where the user can specify them. They need to provide a YAML file named ro-crate-info.yaml
that follows the next template structure:

COMPSs Workflow Information:
name: Name of your COMPSs application
description: Detailed description of your COMPSs application
license: Apache-2.0 #Provide better a URL, but these strings are accepted:
https://about.workflowhub.eu/Workflow-R0O-Crate/#supported-licenses
files: [main_file.py, aux_file_1.py, aux_file_2.pyl # List of application files
Authors:
- name: Author_1 Name
e-mail: author_1@email.com
orcid: https://orcid.org/XXXX-XXXX-XXXX-XXXX
organisation_name: Institution_1 name
ror: https://ror.org/XXXXXXXXX # Find them in ror.org

(continues on next page)

6.4. Data Provenance 219

https://www.researchobject.org/ro-crate/1.1/
https://github.com/ResearchObject/ro-crate-py
https://workflowhub.eu/
https://github.com/ResearchObject/ro-crate-py

COMPSs Documentation, 3.0

(continued from previous page)

- name: Author_2 Name
e-mail: author2@email.com
orcid: https://orcid.org/YYYY-YYYY-YYYY-YYYY
organisation_name: Institution_2 name
ror: https://ror.org/YYYYYYYYY # Find them in Tor.org

Warning: If no YAML file is provided, the runtime will fail to generate provenance, and will automatically
generate an ro-crate-info_TEMPLATE.yaml file that the user can edit to add their details.

As you can see, there are two main blocks in the YAML:

e COMPSs Workflow Information: Where details on the application are provided.
e Authors: Where authors’ details are given.

More specifically, in the COMPSs Workflow Information section:

e The name and description fields are free text, where a long name and description of the application must
be provided.

e The license field is preferred by providing an URL to the license, but a set of predefined strings are also
supported, and can be found here: https://about.workflowhub.eu/Workflow-RO-Crate/#supported-licenses

e files is a list of all the source files of the application (typically all . py files). The files’ order is not important,
since the runtime will obtain the name of the main file from the application execution.

And in the Authors section:

e name, e-mail and organisation_name are strings corresponding to the author’s name, e-mail and their
institution. They are free text, but the e-mail field must follow the user@domain.top format.

e orcid refers to the ORCID identifier of the author. The IDs can be found and created at https://orcid.org/

e ror refers to the Research Organization Registry (ROR) identifier for an institution. They can be found at

http://ror.org/

Tip: It is very important that the list of files, orcid and ror terms are correctly defined, since the runtime
will only register information for the list of files defined, and the orcid and ror are used as unique identifiers
in RO-Crate.

In the following lines, we provide a YAML example for an out-of-core Matrix Multiplication COMPSs application,
distributed with license Apache v2.0, with 2 source files, and authored by 3 persons from two different institutions.

COMPSs Workflow Information:
name: COMPSs Matrix Multiplication, out-of-core using files
description: Hypermatrix size 2x2 blocks, block size 2x2 elements
license: Apache-2.0 #Provide better a URL, but these strings are accepted:
https://about.workflowhub.eu/Workflow-R0O-Crate/#supported-licenses
files: [matmul_directory.py, matmul_tasks.py]

Authors:

- name: Railil Sirvent
e-mail: Raul.Sirvent@bsc.es
orcid: https://orcid.org/0000-0003-0606-2512
organisation_name: Barcelona Supercomputing Center
ror: https://ror.org/05sd8tv96

- name: Rosa M. Badia
e-mail: Rosa.M.Badia@bsc.es
orcid: https://orcid.org/0000-0003-2941-5499
organisation_name: Barcelona Supercomputing Center
ror: https://ror.org/05sd8tv96

(continues on next page)

220 Chapter 6. Tools

https://about.workflowhub.eu/Workflow-RO-Crate/#supported-licenses
https://orcid.org/
http://ror.org/

COMPSs Documentation, 3.0

(continued from previous page)

- name: Adam Hospital
e-mail: adam.hospital@irbbarcelona.org
orcid: https://orcid.org/0000-0002-8291-8071
organisation_name: IRB Barcelona
ror: https://ror.org/01z1gye03

6.4.3 Usage

The way of activating the recording of Data Provenance with COMPSs is very simple. One must only enable
the -p or --provenance flag when using runcomps or enqueue_compss to run or submit a COMPSs application
respectively. As shown in the help option:

compss@bsc:~$ runcompss -h

...
--provenance, -p Generate COMPSs workflow provenance data in RO-Crate format from YAML,,
—file. Automatically

activates -graph and -output_profile.

Default: false

Warning: As stated in the help, provenance automatically activates both --graph and --output_profile
options. Take into account that the graph image generation can take some extra seconds at the end of the
execution of your application, therefore, adjust the --exec_time accordingly.

6.4.4 Result

Once the application has finished, a new sub-folder under the application’s Working Directory will be created with
the name COMPSs_RO-Crate_[uuid]/, which is also known as crate. The contents of the folder include all the
elements needed to reproduce a COMPSs execution, and are:

e Application Source Files: As detailed by the user in the ro-crate-info.yaml file with the term files,
the main source file and all auxiliary files that the application needs (e.g.: .py).

e complete graph.pdf: The image of the workflow generated by the COMPSs runtime, as generated with
the runcompss -g or --graph option.

e App Profile.json: A set of statistics of the application run recorded by the COMPSs runtime, as if
the runcompss --output_profile=<path> option was enabled. It includes, for each resource and method
executed: number of executions of the specific method, as well as maximum, average and minimum run time.

e compss _command line arguments.txt: Stores the options passed by the command line when the
application was submitted. This is very important for reproducing a COMPSs application, since input
parameters could potentially change the resulting workflow generated by the COMPSs runtime.

e ro-crate-metadata.json: The RO-Crate JSON main file describing the contents of this directory (crate)
in the RO-Crate standard format. You can find an example at the end of this Section.

Warning: All previous file names (complete_graph.pdf, App_Profile. json and compss_command_line_-
arguments.txt) are automatically used to generate new files when using the -p or --provenance option. Avoid
using these file names among your own files to avoid unwanted overwritings. You can change the resulting App_-
Profile.json name by using the --output_profile=/path_to/file flag.

6.4. Data Provenance 221

COMPSs Documentation, 3.0

6.4.5 ro-crate-metadata.json example

In the RO-Crate specification, the root file containing the metadata referring to the crate created is named
ro-crate-metadata. json. In these lines we provide an example of an ro-crate-metadata.json file resulting from a
COMPSs application execution, specifically an out-of-core matrix multiplication example that includes matrices A
and B as inputs in an inputs/ sub-directory, and matrix C as the result of their multiplication. For all the specific
details on the fields provided in the JSON file, please refer to the RO-Crate standard Website. Intuitively, if you
search through the JSON file you can find several interesting fields:

e creator: List of authors, identified by their ORCID.

e publisher: Organisations of the authors.

e hasPart in ./: lists all the files and directories this workflow needs and generates, and also the ones included
in the crate. The URIs point to the local machine where the application has been run, thus, tells the user
where the inputs and outputs can be found (in this example, a BSC laptop).

e matmul directory.py: Main file of the application, includes the inputs and outputs needed and gener-
ated by the workflow, and a reference to the generated workflow image in the image field.

e version: The COMPSs specific version and build used to run this application. In the example: 2.10.rc2205.
This is a very important field to achieve reproducibility or replicability, since COMPSs features may vary
their behaviour in different versions of the programming model runtime.

We encourage the reader to navigate through this ro-crate-metadata. json file example to get familiar with its
contents. Many of the fields are easily and directly understandable.

{
"Qcontext": "https://w3id.org/ro/crate/1.1/context",
"Qgraph": [
{
"eid": "./",

"@type": "Dataset",
"creator": [

{
"@id": "https://orcid.org/0000-0003-0606-2512"
3,
{
"@id": "https://orcid.org/0000-0003-2941-5499"
3,
{
"@id": "https://orcid.org/0000-0002-8291-8071"
X
1,
"datePublished": "2022-05-16T08:59:20+00:00",
"description": "Hypermatrix size 2x2 blocks, block size 2x2 elements",
"hasPart": [
{
"@id": "matmul_directory.py"
3,
{
"@id": "complete_graph.pdf"
3,
{
"@id": "App_Profile.json"
3,
{
"@id": "compss_command_line_arguments.txt"
s
{
"@id": "matmul_tasks.py"
+,

(continues on next page)

222 Chapter 6. Tools

https://www.researchobject.org/ro-crate/1.1/

COMPSs Documentation, 3.0

(continued from previous page)

{
"@id": "file://bsccsT42.
—directory/inputs/A/A.0.0"
3,
{
"@id": "file://bsccsT42.
—directory/inputs/A/A.0.1"
},
{
"@id": "file://bsccs742.
—directory/inputs/A/A.1.0"
},
{
"@id": "file://bsccs742.
—directory/inputs/A/A.1.1"
1,
{
"@id": "file://bsccsT42.
—directory/inputs/B/B.0.0"
3,
{
"@id": "file://bsccsT42.
—directory/inputs/B/B.0.1"
},
{
"@id": "file://bsccsT742.
—directory/inputs/B/B.1.0"
},
{
"@id": "file://bsccsT742.
—directory/inputs/B/B.1.1"
3,
{
"@id": "file://bsccsT42.
—directory/inputs/"
3,
{
"@id": "file://bsccsT42.
—directory/C.0.0"
}’
{
"@id": "file://bsccsT742.
—directory/C.0.1"
},
{
"@id": "file://bsccsT742.
—directory/C.1.0"
1,
{
"@id": "file://bsccsT42.
—directory/C.1.1"
}

1,
"license": "Apache-2.0",
"mainEntity": {

"@id": "matmul_directory.py"

int

int

int

int

int

int

int

int

int

int

int

int

int

.bsc

.bsc

.bsc

.bsc

.bsc

.bsc

.bsc

.bsc

.bsc

.bsc

.bsc

.bsc

.bsc

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

.es/Users/rsirvent/COMPSs-DP/matmul _

(continues on next page)

6.4. Data Provenance

223

COMPSs Documentation, 3.0

(continued from previous page)

3,
"name": "COMPSs Matrix Multiplication, out-of-core using files",
"publisher": [
{
"@id": "https://ror.org/05sd8tvo6"
3,
{
"@id": "https://ror.org/01zlgye03"
3
]
3,
{
"@id": "ro-crate-metadata.json",
"@type": "CreativeWork",
"about": {
"@id": "./"
3,
"conformsTo": [
{
"@id": "https://w3id.org/ro/crate/1.1"
1,
{
"@id": "https://w3id.org/workflowhub/workflow-ro-crate/1.0"
}
]
3,
{
"@id": "https://orcid.org/0000-0003-0606-2512",
"@type": "Person",
"affiliation": {
"@id": "https://ror.org/05sd8tv96"
3,
"contactPoint": {
"@id": "mailto:Raul.Sirvent@bsc.es"
3,
"name": "Ra\uOOfcl Sirvent"
3,
{
"@id": "mailto:Raul.Sirvent@bsc.es",
"@type": "ContactPoint",
"contactType": "Author",
"email": "Raul.Sirvent@bsc.es",
"identifier": "Raul.Sirvent@bsc.es",
"url": "https://orcid.org/0000-0003-0606-2512"
}>
{
"@id": "https://ror.org/05sd8tv96",
"@type": "Organization",
"name": "Barcelona Supercomputing Center"
})
{

"@id": "https://orcid.org/0000-0003-2941-5499",
"@type": "Person",
"affiliation": {
"@id": "https://ror.org/05sd8tv96"
},

(continues on next page)

224 Chapter 6. Tools

COMPSs Documentation, 3.0

(continued from previous page)

"contactPoint": {
"@id": "mailto:Rosa.M.Badia®@bsc.es"
},

"name": "Rosa M. Badia"

"@id": "mailto:Rosa.M.Badia@bsc.es",

"@type": "ContactPoint",

"contactType": "Author",

"email": "Rosa.M.Badia@bsc.es",

"identifier": "Rosa.M.Badia@bsc.es",

"url": "https://orcid.org/0000-0003-2941-5499"

"@id": "https://orcid.org/0000-0002-8291-8071",
"@type": "Person",
"affiliation": {

"@id": "https://ror.org/01zlgye03"
3,
"contactPoint": {

"@id": "mailto:adam.hospital@irbbarcelona.org"
+,

"name": "Adam Hospital"

-~

"@id": "mailto:adam.hospital@irbbarcelona.org",
"@type": "ContactPoint",

"contactType": "Author",

"email": "adam.hospital@irbbarcelona.org",
"identifier": "adam.hospital@irbbarcelona.org",
"url": "https://orcid.org/0000-0002-8291-8071"

"@id": "https://ror.org/01lzlgye03",
"@type": "Organization",
"name": "IRB Barcelona"

"@id": "matmul_directory.py",
"Qtype": [
"File",
"SoftwareSourceCode",
"ComputationalWorkflow"
1,
"contentSize": 2151,
"description": "Main file of the COMPSs workflow source files",
"encodingFormat": "text/plain",
"image": {
"@id": "complete_graph.pdf"
}:
"input": [
{
"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul _
—directory/inputs/"
}3
{

(continues on next page)

6.4. Data Provenance 225

COMPSs Documentation, 3.0

(continued from previous page)

—directory/C.0.0"

—directory/C.0.1"

—directory/C.1.0"

—directory/C.1.1"

—directory/C.0.0"

—directory/C.0.1"

—directory/C.1.0"

"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_
1,
{
"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_
},
{
"@id": "file://bsccsT742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul _
1,
{
"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_
}
1,
"name": "matmul_directory.py",
"output": [
{
"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul _
1,
{
"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_
1,
{
"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_
1,
{
"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_

—directory/C.1.1"

}
1,
"programminglanguage": {
"@id": "#compss"

3

"@id": "#compss",

"@type": "ComputerLanguage",

"alternateName": "COMPSs",

"citation": "https://doi.org/10.1007/s10723-013-9272-5",
"name": "COMPSs Programming Model",

"url": "http://compss.bsc.es/",

"version": "2.10.rc2205"

"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/276",
"@type": "WebSite",
"name": "Acrobat PDF 1.7 - Portable Document Format"

"@id": "complete_graph.pdf",
"otype": [

(continues on next page)

226

Chapter 6. Tools

COMPSs Documentation, 3.0

(continued from previous page)

"File",
"ImageObject",
"WorkflowSketch"
1,
"about": {
"@id": "matmul_directory.py"
}:
"contentSize": 19582,
"description": "The graph diagram of the workflow, automatically generated by

—COMPSs runtime",

-

e asd

e asd

"encodingFormat": [
L
"application/pdf",
{
"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/276"
}

1,
"name": "complete_graph.pdf"

"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/817",
"O@type": "WebSite",
"name": "JSON Data Interchange Format"

"@id": "App_Profile.json",
"@type": "File",
"contentSize": 246,
"description": "COMPSs application Tasks profile",
"encodingFormat": [
"application/json",

{
"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/817"
b
1,
"name": "App_Profile.json"
"@id": "compss_command_line_arguments.txt",

"@type": "File",
"contentSize": 4,
"description": "Parameters passed as arguments to the COMPSs application through,

—»the command line",

e e sd

()

"encodingFormat": "text/plain",
"name": "compss_command_line_arguments.txt"

"@id": "matmul_tasks.py",
"@type": "File",

"contentSize": 1721,
"description": "Auxiliary File",
"encodingFormat": "text/plain",
"name": "matmul_tasks.py"

(continues on next page)

6.4.

Data Provenance 227

COMPSs Documentation, 3.0

(continued from previous page)

"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_directory/

—inputs/A/A.0.0",
"@type": "File",
"contentSize": 16,
"name": "A.0.0",

"sdDatePublished": "2022-05-16T08:59:20+00:00"

s
{

"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_directory/

—inputs/A/A.0.1",
"@type": "File",
"contentSize": 16,
"name": "A.0.1",

"sdDatePublished": "2022-05-16T08:59:20+00:00"

1,
{

"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul _directory/

—inputs/A/A.1.0",
"@type": "File",
"contentSize": 16,
"name": "A.1.0",

"sdDatePublished": "2022-05-16T08:59:20+00:00"

s
{

"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul _directory/

—inputs/A/A.1.1",
"@type": "File",
"contentSize": 16,
"name": "A.1.1",

"sdDatePublished": "2022-05-16T08:59:20+00:00"

3,
{

"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul_directory/

—inputs/B/B.0.0",
"@type": "File",
"contentSize": 16,
"name": "B.0.0",

"sdDatePublished": "2022-05-16T08:59:20+00:00"

s
{

"@id": "file://bsccs742.int.bsc.es/Users/rsirvent/COMPSs-DP/matmul _directory/

—inputs/B/B.0.1",
"@type": "File",
"contentSize": 16,
"name": "B.