COMPSs

s 111

COMPSs Manual

Workflows and Distributed Computing Group

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

Last updated : November, 2022

Online version available at COMPSs - ReadTheDocs

https://compss-doc.readthedocs.io/en/latest/

Table of contents

Table of contents
List of figures
List of tables

1 What is COMPSs?
1.1 More information:

2 Quickstart

2.1 Install COMPSS e
2.2 Write your first app e
2.3 Useful information

3 Installation and Administration

3.1 Dependencies e e e
3.1.1 Build Dependencies
3.1.2 Optional Dependencies

3.2 Building from sources L
3.2.1 Postinstallationo L e

3.3 PIp . o e
3.3.1 Pre-requisites e e e
3.3.2 Imstallation
3.3.3 Post installation L

3.4 Supercomputers e e e e e
3.4.1 Prerequisites e e
3.4.2 Imstallation L e
3.4.3 Configuration e e
3.4.4 Post installationo

3.5 Additional Configuration
3.5.1 Configure SSH passwordless L
3.5.2 Configure the COMPSs Cloud Connectors v

3.6 Configuration Files e
3.6.1 Resourcesfile
3.6.2 Project file e
3.6.3 Configuration examples L L

4 Application development

A1 Java . .o e e e e
4.1.1 Programming Model e
4.1.2 Application Compilation L
4.1.3 Application Execution

4.2 Python Binding L

4.2.1 Programming Model e

4.2.2 Application Execution
4.2.3 Integration with Jupyter notebook oL oL
4.2.4 Integration with emcee L e e e
43 C/CH++ Binding
4.3.1 Programming Model e
4.3.2 Use of programming models inside tasks L.
4.3.3 Application Compilation
4.3.4 Application Execution L
4.3.5 Task Dependency Graph e
4.4 Constraints e e

Execution Environments

5.1 Schedulers
5.2 Checkpointing e e
5.3 Deployments e
5.3.1 Master-Worker Deployments
5.3.2 Agents Deployments
Tools
6.1 Application graph L
6.2 Monitor e e
6.2.1 Service configuration L L
6.2.2 Usage e e
6.2.3 Graphical Interface features e
6.3 Tracing
6.3.1 COMPSs applications tracing L e
6.3.2 Visualization
6.3.3 Imterpretation oL L e
6.3.4 Analysis e
6.3.5 PAPIL Hardware Counters i i i ittt e e e e e e e
6.3.6 Paraver: configurations L L
6.3.7 User Events in Python
6.4 Data Provenance L e
6.4.1 Software dependencies e e
6.4.2 Previous needed information e
6.4.3 Usage e
6.4.4 Result e
6.4.5 Log and time statistics Lo
6.4.6 ro-crate-metadata.json PyCOMPSs example (Laptop)
6.4.7 ro-crate-metadata.json Java COMPSs example (MN4 supercomputer)
Persistent Storage
7.1 First steps . . . o o o o e
7.1.1 Defining the data model
7.1.2 Interacting with the persistent storage L L.
7.1.3 Running with persistent storage L Lo
7.2 COMPSs + dataClay o
7.2.1 COMPSs + dataClay Dependencies v
7.2.2 Enabling COMPSs applications with dataClay
7.2.3 Executing a COMPSs application with dataClay
7.3 COMPSs + Hecuba e
7.3.1 COMPSs + Hecuba Dependencies
7.3.2 Enabling COMPSs applications with Hecuba
7.3.3 Executing a COMPSs application with Hecuba
7.4 COMPSs + Redis o e e e
7.4.1 COMPSs + Redis Dependencies
7.4.2 Enabling COMPSs applications with Redis

7.4.3 Executing a COMPSs application with Redis

7.5 Implement your own Storage interface for COMPSs

7.5.1 Generic Storage Object Interface oL
7.5.2 Generic Storage Runtime Interfaces oo oL
7.5.3 Storage Interface usage L

8 Sample Applications

8.1 Java Sample applications L
8.1.1 Hello World o L
8.1.2 Simple
8.1.3 Incremento
8.1.4 Matrix multiplication
8.1.5 Sparse LU decomposition
8.1.6 BLAST Workflow e

8.2 Python Sample applications
8.2.1 Simple L e e
8.2.2 Increment L e e e e e
8.2.3 Kmeans e e e
8.2.4 Matmul L e e e
8.2.5 Lysozyme in water L e
8.2.6 Persistent Storage

8.3 C/C+H+ Sample applications
8.3.1 Simple L
8.3.2 Increment L e

9 PyCOMPSs CLI

9.1 Requirements and Installation
9.1.1 Requirements L e e e e e
9.1.2 Imstallation e
9.2 Usage o e e e
9.2.1 Create a new COMPSs environment in your development directory
9.2.2 Managing environments Lo L0 L Lo Lo
9.2.3 Deploying applications
9.2.4 Executing applications Lo e
9.2.5 Managing jobso e
9.2.6 Running the COMPSs monitor e
9.2.7 Running Jupyter notebookso Lo
9.2.8 Generating the task grapho o o
9.2.9 Tracing applications or notebooks Lo L Lo
9.2.10 Adding more nodes e e
9.2.11 Removing existing nodes L L e

10 PyCOMPSs Notebooks
10.1 Syntax oo
10.1.1 Basics of programming with PyCOMPSs
10.1.2 PyCOMPSs: Synchronization
10.1.3 PyCOMPSs: Using objects, lists, and synchronization
10.1.4 PyCOMPSs: Using objects, lists, and synchronization
10.1.5 PyCOMPSs: Using objects, lists, and synchronization. Using collections.
10.1.6 PyCOMPSs: Using objects, lists, and synchronization. Using dictionary.
10.1.7 PyCOMPSs: Using objects, lists, and synchronization. Managing fault-tolerance.
10.1.8 PyCOMPSs: Using files 0 e
10.1.9 PyCOMPSs: Using constraints
10.1.10PyCOMPSs: Polymorphism
10.1.11 PyCOMPSs: Other decorators - Binary v v v i i
10.1.12PyCOMPSs: Integration with Numba
10.1.13Dislib tutorial oL
10.1.14 Machine Learning with dislib o o
10.2 Hands-on 0L e e
10.2.1 Sort by Key o o e

10.2.2 KMeans v v v v v o e e e e e e 420

10.2.3 KMeans with Reduce 424
10.2.4 Cholesky Decomposition/Factorization Lo 428
10.2.5 Wordcount Exercise L 432
10.2.6 Wordcount Solution 434
10.2.7 Wordcount Solution (With reduce) 437
10.2.8 Integral PI (iterative) i i i 440
10.2.9 Integral PI (with @Qreduction) o 443

10.3 Demos o e e e e e 445
10.3.1 Accelerating parallel code with PyCOMPSs and Numba 445

11 Troubleshooting 453
11.1 How to debug e 453
11.1.1 Java examples oL e e 454
11.1.2 Python examples o 454
11.1.3 C/CH+ exampleso oo e 458

11.2 Common ISSues e e e e e e e 458
11.2.1 Tasks are not executed L 458
11.2.2 Jobs fail o e 458
11.2.3 Exceptions when starting the Worker processes 459
11.2.4 Compilation error: @Method not found Lo 459
11.2.5 Jobs failed on method reflection 460
11.2.6 Jobs failed on reflect target invocation null pointer 0oL 461
11.2.7 Tracing merge failed: too many open files oo 461
11.2.8 Performance issues L e 462

11.3 Memory Profiling e 463
11.3.1 Advanced profiling L e 463

11.4 Known Limitations e 465
11.4.1 Global oL e 465
11.4.2 With Java Applications 465
11.4.3 With Python Applications 466

11.4.4 With Services o o o o 467

List of figures

[\

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

The dependency graph of the increment application 14
Trace of the increment application L 15
Matmul Execution Graph. e 19
Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts and in Orange

system dependant scripts L. oL oL Lo e e 32
Cluster example e 43
Task dependency graph of the Code 131 execution 131
Matmul Execution Graph. 143
Output generated by the execution of the Simple Java application with COMPSs 161
Sequential execution of the Hello java application, 162
COMPSs execution of the Hello java application 162
Structure of the logs folder for the Simple java application in off mode 162
Structure of the logs folder for the Simple java application in info mode 163
runtime.log generated by the execution of the Simple java application 163
resources.log generated by the execution of the Simple java application 164
Structure of the logs folder for the Simple java application in debug mode 164
COMPSs Monitor login for Supercomputers o 181
COMPSs Monitor main page for a test application at Supercomputers 181
Result and log folders of a Matmul execution with COMPSs and Docker 185
The dependency graph of the SparseLU application 202
COMPSs Monitor start command 203
COMPSs monitoring interface L L 204
Logs generated by the Simple java application with the monitoring flag enabled 204
tracefile for a k-means algorithm visualized with compss_runtime.cfg 212
Paraver menu Lo e 216
Kmeans Trace file e 216
Paraver view adjustment: View Event Flagso oL 217
Paraver view adjustment: Show info panelo o oo 218
Paraver view adjustment: Zoom configuration oL oL Lo 218
Paraver view adjustment: Zoom result L 218
Trace interpretation oL L e 219
Basic trace view of a Kmeans execution. L Lo 220
Data dependencies graph of a Kmeans execution. 0L 220
Zoomed in view of a Kmeans execution (first iteration).o L. 220
Original sample trace of a Kmeans execution to be analyzed 221
Paraver Menu - New Histogram L 221
Histogram configuration (Accept default values) Lo L 222
Kmeans histogram corresponding to previous trace Lo 222
Kmeans numerical histogram corresponding to previous trace 222

39
40
41
42

43

44
45
46
47
48
49
50
51
52
53

54

Paraver window properties button Lo Lo 223

Paraver histogram options menu oL 224
Kmeans histogram with the number of bursts 0oL 224
User events trace file 230
COMPSs with persistent storage architecture 261
Java increment tasks graph oL Lo 289
Matrix multiplication L e e e 289
Sparse LU decomposition 291
The COMPSs Blast workflow 293
Python increment tasks grapho oo 299
Python kmeans tasks graph L Lo 306
Python matrix multiplication tasks graph L 309
Python Lysozyme in Water tasks graph L 316
1xyw Potential result (plotted with GRACE) 317
Cincrement tasks graph L Lo 334

mprof plot example L 463

List of tables

N O U W N

10
11
12
13
14
15

16
17

18
19
20

21
22
23
24
25
26

COMPSs dependencies 0 e e e 21
Connector supported properties in the project.xml file 52
Properties supported by any SSH based connector in the project.xml file 52
rOCCI extensions in the project.xml file oo oL 53
Configuration of the <resources>.xml templates file, 53
JClouds extensions in the <project>.xml file oo oL 53
Mesos connector options in the <project>.xml file o oL, o4
Arguments of the @task decorator 85
Supported StdIOStreams for the @binary, @ompss and @mpi decorators 108
File parameters definition shortcuts Lo 109
COMPSs Python API functions 0 e 120
PyCOMPSs start function for Jupyter notebook 127
PyCOMPSs stop function for Jupyter notebook L. 128
Arguments of the @constraint decorator e 145
Arguments of the @Processor decorator e 146
Schedulers e 148
Checkpointing L e 150
General paraver configurations for COMPSs Applications 226
Available paraver configurations for Python events of COMPSs Applications 227
Available paraver configurations for COMPSs Applications 227
Available methods from StorageObject L 263
Available methods from StorageObject in Python L. 265
Available methods from StorageObject 274
SCO object definition L e 277
Java APL o e 279
Python API L 281

vii

COMPSs Documentation, 3.1

COMP Superscalar (COMPSs) is a task-based programming model which aims to ease the development
of applications for distributed infrastructures, such as large High-Performance clusters (HPC), clouds and con-
tainer managed clusters. COMPSs provides a programming interface for the development of the applications
and a runtime system that exploits the inherent parallelism of applications at execution time.

To improve programming productivity, the COMPSs programming model has following characteristics:

e Agnostic of the actual computing infrastructure: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail that
could tie them to a particular platform, like deployment or resource management. This makes applications
portable between infrastructures with diverse characteristics.

e Single memory and storage space: the memory and file system space is also abtracted in COMPSs,
giving the illusion that a single memory space and single file system is available. The runtime takes care of
all the necessary data transfers.

e Standard programming languages: COMPSs is based on the popular programming language Java, but
also offers language bindings for Python (PyCOMPSs) and C/C++ applications. This makes it easier to
learn the model since programmers can reuse most of their previous knowledge.

e No APIs: In the case of COMPSs applications in Java, the model does not require to use any special API
call, pragma or construct in the application; everything is pure standard Java syntax and libraries. With
regard the Python and C/C++ bindings, a small set of API calls should be used on the COMPSs applications.

This manual is divided in 12 sections:

http://compss.bsc.es

COMPSs Documentation, 3.1

Chapter 1

What 1s COMPSs?

COMP Superscalar (COMPSs) is a task-based programming model which aims to ease the development
of applications for distributed infrastructures, such as large High-Performance clusters (HPC), clouds and con-
tainer managed clusters. COMPSs provides a programming interface for the development of the applications
and a runtime system that exploits the inherent parallelism of applications at execution time.

To improve programming productivity, the COMPSs programming model has following characteristics:

e Sequential programming: COMPSs programmers do not need to deal with the typical duties of paral-
lelization and distribution, such as thread creation and synchronization, data distribution, messaging or fault
tolerance. Instead, the model is based on sequential programming, which makes it appealing to users that
either lack parallel programming expertise or are looking for better programmability.

e Agnostic of the actual computing infrastructure: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail that
could tie them to a particular platform, like deployment or resource management. This makes applications
portable between infrastructures with diverse characteristics.

e Single memory and storage space: the memory and file system space is also abtracted in COMPSs,
giving the illusion that a single memory space and single file system is available. The runtime takes care of
all the necessary data transfers.

e Standard programming languages: COMPSs is based on the popular programming language Java, but
also offers language bindings for Python (PyCOMPSs) and C/C++ applications. This makes it easier to
learn the model since programmers can reuse most of their previous knowledge.

e No APIs: In the case of COMPSs applications in Java, the model does not require to use any special API
call, pragma or construct in the application; everything is pure standard Java syntax and libraries. With
regard the Python and C/C++ bindings, a small set of API calls should be used on the COMPSs applications.

PyCOMPSs/COMPSs can be seen as a programming environment for the development of complex work-
flows. For example, in the case of PyCOMPSs, while the task-orchestration code needs to be written in Python, it
supports different types of tasks, such as Python methods, external binaries, multi-threaded (internally parallelised
with alternative programming models such as OpenMP or pthreads), or multi-node (MPI applications). Thanks
to the use of Python as programming language, PyCOMPSs naturally integrates well with data analytics and
machine learning libraries, most of them offering a Python interface. PyCOMPSs also supports reading/writing
streamed data.

At a lower level, the COMPSs runtime manages the execution of the workflow components implemented with
the PyCOMPSs programming model. At runtime, it generates a task-dependency graph by analysing the
existing data dependencies between the tasks defined in the Python code. The task-graph encodes the existing
parallelism of the workflow, which is then scheduled and executed by the COMPSs runtime in the computing
resources.

The COMPSs runtime is also able to react to tasks failures and to exceptions in order to adapt the behaviour
accordingly. These functionalities, offer the possibility of designing a new category of workflows with very
dynamic behaviour, that can change their configuration at execution time upon the occurrence of given events.

COMPSs Documentation, 3.1

1.1 More information:

e Project website: http://compss.bsc.es
e Project repostory: https://github.com/bsc-wdc/compss

4 Chapter 1. What is COMPSs?

http://compss.bsc.es
https://github.com/bsc-wdc/compss

Chapter 2

Quickstart

2.1 Install COMPSs

e Choose the installation method:
Pip
Build from sources
Supercomputer
Docker
Local to the user
Systemwide
Requirements:

e Ensure that the required system Dependencies are installed.

e Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment
variable.

e Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the $HOME/ . Local/ folder (or alternatively within the active virtual environment).

$ pip install pycompss -v

Important: Please, update the environment after installing COMPSs:

$ source ~/.bashrc # or alternatively reboot the machine

If installed within a virtual environment, deactivate and activate it to ensure that the environment is
propperly updated.

Warning: If using Ubuntu 18.04 or higher, you will need to comment some lines of your .bashrc
and do a complete logout. Please, check the Post installation Section for detailed instructions.

See Installation and Administration section for more information
Requirements:

e Ensure that the required system Dependencies are installed.

COMPSs Documentation, 3.1

e Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment
variable.

e Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the /usr/1ib64/pythonX.Y/site-packages/pycompss/ folder.

$ sudo -E pip install pycompss -v

Important: Please, update the environment after installing COMPSs:

$ source /etc/profile.d/compss.sh # or alternatively reboot the machine

Warning: If using Ubuntu 18.04 or higher, you will need to comment some lines of your .bashrc
and do a complete logout. Please, check the Post installation Section for detailed instructions.

See Installation and Administration section for more information
Local to the user

Systemwide

Requirements:

e Ensure that the required system Dependencies are installed.

e Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment
variable.

e Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the $H0ME/COMPSs/ folder.

$ git clone https://github.com/bsc-wdc/compss.git
cd compss

./submodules_get.sh

cd builders/

export INSTALL_DIR=$HOME/COMPSs/

./buildlocal ${INSTALL_DIR}

“hH H P P &P

The different installation options can be found in the command help.

$./buildlocal -h

Please, check the Post installation Section.
See Installation and Administration section for more information
Requirements:

e Ensure that the required system Dependencies are installed.

e Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment
variable.

e Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the /opt/COMPSs/ folder.

$ git clone https://github.com/bsc-wdc/compss.git
$ cd compss

(continues on next page)

6 Chapter 2. Quickstart

COMPSs Documentation, 3.1

(continued from previous page)

$./submodules_get.sh

$ cd builders/

$ export INSTALL_DIR=/opt/COMPSs/

$ sudo -E ./buildlocal ${INSTALL_DIR}

The different installation options can be found in the command help.

$./buildlocal -h

Please, check the Post installation Section.

See Installation and Administration section for more information
Please, check the Supercomputers section.

COMPSs can be used within Docker using the PyCOMPSs CLI.
Requirements (Optional):

e docker >= 17.12.0-ce

e Python 3

* pip

e docker package for Python

Since the PyCOMPSs CLI package is available in Pypi (pycompss-cli), it can be easly installed with pip as follows:

$ python3 -m pip install pycompss-cli

A complete guide about the PyCOMPSs CLI installation and usage can be found in the PyCOMPSs CLI Section.

Tip: Please, check the PyCOMPSs CLI Installation Section for the further information with regard to the
requirements installation and troubleshooting.

Warning: For macOS distributions, only installations local to the user are supported (both with pip and
building from sources). This is due to the System Integrity Protection (SIP) implemented in the newest versions
of macOS, that does not allow modifications in the /System directory, even when having root permissions in
the machine.

2.2 Write your first app

Choose your flavour:
Java

Python

C/C++

2.2. Write your first app 7

https://www.docker.com
https://pypi.org/project/docker/
https://pypi.org/project/pycompss-cli/

COMPSs Documentation, 3.1

Application Overview

A COMPSs application is composed of three parts:

e Main application code: the code that is executed sequentially and contains the calls to the user-selected
methods that will be executed by the COMPSs runtime as asynchronous parallel tasks.

e Remote methods code: the implementation of the tasks.

e Task definition interface: It is a Java annotated interface which declares the methods to be run as remote
tasks along with metadata information needed by the runtime to properly schedule the tasks.

The main application file name has to be the same of the main class and starts with capital letter, in this
case it is Simple.java. The Java annotated interface filename is application name + Itf.java, in this case it is
Simpleltf.java. And the code that implements the remote tasks is defined in the application name + Impl.java
file, in this case it is SimpleImpl.java.

All code examples are in the /home/compss/tutorial_apps/java/ folder of the development environment.

Main application code

In COMPSs, the user’s application code is kept unchanged, no API calls need to be included in the main application
code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the creation of
remote tasks also taking care of the access to files where required. Let’s consider the Simple application example
that takes an integer as input parameter and increases it by one unit.

The main application code of Simple application is shown in the following code block. It is executed sequentially
until the call to the increment() method. COMPSs, as mentioned above, replaces the call to this method with
the generation of a remote task that will be executed on an available node.

Code 1: Simple in Java (Simple.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import simple.SimpleImpl;

public class Simple {
public static void main(String[] args) {

String counterName = "counter";
int initialValue = args[0];

2 — //
// Creation of the file which will contain the counter variable //
F A et e R LT //
try {

FileOutputStream fos = new FileOutputStream(counterName) ;
fos.write(initialValue);
System.out.println("Initial counter value is " + initialValue);
fos.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}
Y e et //
// Ezecution of the program //

(continues on next page)

8 Chapter 2. Quickstart

COMPSs Documentation, 3.1

(continued from previous page)

F A e //
SimpleImpl.increment (counterName) ;

/) //
// Reading from an object stored in a File //
F A e L e T //
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());
fis.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

}
}

Remote methods code

The following code contains the implementation of the remote method of the Simple application that will be
executed remotely by COMPSs.

Code 2: Simple Implementation (Simplelmpl.java)

package simple;

import java.io.FilelInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.FileNotFoundException;

public class SimpleImpl {
public static void increment(String counterFile) {

try{
FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close();
FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count);
fos.close();

}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();

}catch(IOException ioe){
ioe.printStackTrace();

}

2.2. Write your first app 9

COMPSs Documentation, 3.1

Task definition interface

This Java interface is used to declare the methods to be executed remotely along with Java annotations that specify
the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String type are

supported) and its directions (IN, OUT, INOUT, COMMUTATIVE or CONCURRENT).

The Java class that contains the code of the method.

3. The constraints that a given resource must fulfill to execute the method, such as the number of processors
or main memory size.

N

The task description interface of the Simple app example is shown in the following figure. It includes the description
of the Increment() method metadata. The method interface contains a single input parameter, a string containing
a path to the file counterFile. In this example there are constraints on the minimum number of processors and
minimum memory size needed to run the method.

Code 3: Interface of the Simple application (Simpleltf.java)

package simple;

import es.bsc.compss.types.annotations.Constraints;

import es.bsc.compss.types.annotations.task.Method;

import es.bsc.compss.types.annotations.Parameter;

import es.bsc.compss.types.annotations.parameter.Direction;
import es.bsc.compss.types.annotations.parameter.Type;

public interface SimpleItf {

OConstraints(computingUnits = "1", memorySize = "0.3")
@Method(declaringClass = "simple.SimpleImpl")
void increment(
OParameter (type = Type.FILE, direction = Direction.INOUT)
String file
)3

Application compilation

A COMPSs Java application needs to be packaged in a jar file containing the class files of the main code, of
the methods implementations and of the Itf annotation. This jar package can be generated using the commands
available in the Java SDK or creating your application as a Apache Maven project.

To integrate COMPSs in the maven compile process you just need to add the compss-api artifact as dependency
in the application project.

<dependencies>
<dependency>
<groupId>es.bsc.compss</groupld>
<artifactId>compss-api</artifactId>
<version>${compss.version}</version>
</dependency>
</dependencies>

To build the jar in the maven case use the following command

$ mvn package

Next we provide a set of commands to compile the Java Simple application (detailed at Java Sample applications).

10 Chapter 2. Quickstart

COMPSs Documentation, 3.1

$ cd tutorial_apps/java/simple/src/main/java/simple/

$~/tutorial _apps/java/simple/src/main/java/simple$ javac *.java
$~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
$~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple/
$~/tutorial_apps/java/simple/src/main/java$ mv ./simple.jar ../../../jar/

In order to properly compile the code, the CLASSPATH variable has to contain the path of the compss-engine.jar
package. The default COMPSs installation automatically add this package to the CLASSPATH; please check
that your environment variable CLASSPATH contains the compss-engine.jar location by running the following
command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine.jar package in
your classpath. We recommend to automatically load the variable by editing the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

Application execution

A Java COMPSs application is executed through the runcompss script. An example of an invocation of the script
is:

$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar simple.Simple 1

A comprehensive description of the runcompss command is available in the Fzecuting COMPSs applications section.

In addition to Java, COMPSs supports the execution of applications written in other languages by means of
bindings. A binding manages the interaction of the no-Java application with the COMPSs Java runtime, providing
the necessary language translation.

Let’s write your first Python application parallelized with PyCOMPSs. Consider the following code:

Code 4: increment.py

import time
from pycompss.api.api import compss_wait_on
from pycompss.api.task import task

O@task(returns=1)

def increment(value):
time.sleep(value * 2) # mimic some computational time
return value + 1

def main():
values = [1, 2, 3, 4]
start_time = time.time()
for pos in range(len(values)):
values[pos] = increment(values [pos])
values = compss_wait_on(values)

assert values == [2, 3, 4, 5]

print(values)

print("Elapsed time: " + str(time.time() - start_time))
if __name__=='__main__":

main()

2.2. Write your first app 11

COMPSs Documentation, 3.1

This code increments the elements of an array (values) by calling iteratively to the increment function. The
increment function sleeps the number of seconds indicated by the value parameter to represent some computational
time. On a normal python execution, each element of the array will be incremented after the other (sequentially),
accumulating the computational time. PyCOMPSs is able to parallelize this loop thanks to its @task decorator,
and synchronize the results with the compss_wait_on API call.

Note: If you are using the PyCOMPSs CLI (pycompss-cli), it is time to deploy the COMPSs environment within
your current folder:

$ pycompss init

Please, be aware that the first time needs to download the docker image from the repository, and it may take a
while.

Copy and paste the increment code it into increment.py.

Execution

Now let’s execute increment.py. To this end, we will use the runcompss script provided by COMPSs:

$ runcompss -g increment.py
[Output in next step]

Or alternatively, the pycompss run command if using the PyCOMPSs CLI (which wraps the runcompss command
and launches it within the COMPSs’ docker container):

$ pycompss run -g increment.py
[Output in next step]

Note: The -g flag enables the task dependency graph generation (used later).

The runcompss command has a lot of supported options that can be checked with the -h flag. They can also be
used within the pycompss run command.

Tip: It is possible to run also with the python command using the pycompss module, which accepts the same
flags as runcompss:

$ python -m pycompss -g increment.py # Parallel ezecution
[Output in next stepl

Having PyCOMPSs installed also enables to run the same code sequentially without the need of removing the
PyCOMPSs syntax.

$ python increment.py # Sequential ezecution
[2, 3, 4, 5]
Elapsed time: 20.0161030293

12 Chapter 2. Quickstart

https://pypi.org/project/pycompss-cli/

COMPSs Documentation, 3.1

Output

$ runcompss -g increment.py

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values

[(433) API] - Starting COMPSs Runtime v3.1
[2, 3, 4, 5]

Elapsed time: 11.5068922043

[(4389) API] - Execution Finished

Nice! it run successfully in my 8 core laptop, we have the expected output, and PyCOMPSs has been able to
run the increment.py application in almost half of the time required by the sequential execution. What happened
under the hood?

COMPSs started a master and one worker (by default configured to execute up to four tasks at the same time)
and executed the application (offloading the tasks execution to the worker).

Let’s check the task dependency graph to see the parallelism that COMPSs has extracted and taken advantage of.

Task dependency graph

COMPSs stores the generated task dependecy graph within the $HOME/.COMPSs/<APP_NAME>_<00-99>/monitor
directory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot
viewer.

Tip: COMPSs provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/increment.py_01/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

It is also available within the PyCOMPSs CLI:

$ cd $HOME/.COMPSs/increment.py_01/monitor
$ pycompss gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

And you should see:

COMPSs has detected that the increment of each element is independent, and consequently, that all of them can
be done in parallel. In this particular application, there are four increment tasks, and since the worker is able to
run four tasks at the same time, all of them can be executed in parallel saving precious time.

2.2. Write your first app 13

COMPSs Documentation, 3.1

main increment.increment
< ; D
l;
e

Figure 1: The dependency graph of the increment application

Check the performance

Let’s run it again with the tracing flag enabled:

$ runcompss -t increment.py
[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

Welcome to Extrae 3.5.3
[... Extrae prolog ...]

WARNING: COMPSs Properties file is null. Setting default values
[(434) API] - Starting COMPSs Runtime v3.1

[2, 3, 4, 5]

Elapsed time: 13.1016821861

[... Extrae eplilog ...]

mpi2prv: Congratulations! ./trace/increment.py_compss_trace_1587562240.prv has been
—generated.

[(24117) API] - Execution Finished

The execution has finished successfully and the trace has been generated in the $HOME/.COMPSs/<APP_NAME>_ -
<00-99>/trace directory in prv format, which can be displayed and analysed with PARAVER.

$ cd $HOME/.COMPSs/increment.py_02/trace
$ wxparaver increment.py_compss_trace_x.prv

Note: In the case of using the PyCOMPSs CLI, the trace will be generated in the .COMPSs/<APP_NAME>_-
<00-99>/trace directory:

$ cd .COMPSs/increment.py_02/trace
$ wxparaver increment.py_compss_trace_x.prv

Once Paraver has started, lets visualize the tasks:

14 Chapter 2. Quickstart

https://tools.bsc.es/paraver

COMPSs Documentation, 3.1

e (Click in File and then in Load Configuration
e Look for /PATH/TO/COMPSs/Dependencies/paraver/cfgs/compss_tasks.cfg and click Open.

Note: In the case of using the PyCOMPSs CLI, the configuration files can be obtained by downloading them
from the COMPSs repositoy.

And you should see:

Compss Tasks @ increment.py_compss_trace_1587562240. prv

THREAD

Figure 2: Trace of the increment application

The X axis represents the time, and the Y axis the deployed processes (the first three (1.1.1-1.1.3) belong to
the master and the fourth belongs to the master process in the worker (1.2.1) whose events are shown with the
compss_runtime.cfg configuration file).

The increment tasks are depicted in blue. We can quickly see that the four increment tasks have been executed
in parallel (one per core), and that their lengths are different (depending on the computing time of the task
represented by the time.sleep(value * 2) line).

Paraver is a very powerful tool for performance analysis. For more information, check the Tracing Section.

Note: If you are using the PyCOMPSs CLI, it is time to stop the COMPSs environment:

$ pycompss stop

Application Overview
As in Java, the application code is divided in 3 parts: the Task definition interface, the main code and task
implementations. These files must have the following notation,: <app ame>.idl, for the interface file, <app -

name>.cc for the main code and <app name>-functions.cc for task implementations. Next paragraphs provide
an example of how to define this files for matrix multiplication parallelised by blocks.

Task Definition Interface

As in Java the user has to provide a task selection by means of an interface. In this case the interface file has the
same name as the main application file plus the suffix “idl”, i.e. Matmul.idl, where the main file is called Matmul.cc.

Code 5: Matmul.idl

interface Matmul
{
// C functions
void initMatrix(inout Matrix matrix,
in int mSize,
in int nSize,
in double val);

(continues on next page)

2.2. Write your first app 15

https://github.com/bsc-wdc/compss/tree/stable/files/paraver/cfgs

COMPSs Documentation, 3.1

(continued from previous page)

void multiplyBlocks(inout Block blockl,
inout Block block2,
inout Block block3);
}s

The syntax of the interface file is shown in the previous code. Tasks can be declared as classic C function prototypes,
this allow to keep the compatibility with standard C applications. In the example, initMatrix and multiplyBlocks
are functions declared using its prototype, like in a C header file, but this code is C++ as they have objects as
parameters (objects of type Matrix, or Block).

The grammar for the interface file is:

["static"] return-type task-name (parameter {, parameter }*);
return-type = "void" | type

ask-name = <qualified name of the function or method>

parameter = direction type parameter-name

direction = "in" | "out" | "inout"

type = "char" | "int" | "short" | "long" | "float" | "double" | "boolean" |
"char[<size>]" | "int[<size>]" | "short[<size>]" | "long[<size>]" |
"float[<size>]" | "double[<size>]" | "string" | "File" | class-name

class-name = <qualified name of the class>

Main Program
The following code shows an example of matrix multiplication written in C++.

Code 6: Matrix multiplication

#include "Matmul.h"

#include "Matriz.h"

#include "Block.h"

int N; //MSIZE

int M; //BSIZE

double val;

int main(int argc, char **argv)

{
Matrix A;
Matrix B;
Matrix C;

N = atoi(argv[il);
M = atoi(argv[2]);
val = atof (argv[3]);

compss_on() ;
A = Matrix::init(N,M,val);

initMatrix(&B,N,M,val);

(continues on next page)

16 Chapter 2. Quickstart

COMPSs Documentation, 3.1

(continued from previous page)

initMatrix(&C,N,M,0.0);
cout << "Waiting for initialization...\n";

compss_wait_on(B);
compss_wait_on(C);

cout << "Initialization ends...\n";
C.multiply(A, B);

compss_off () ;
return 0;

The developer has to take into account the following rules:

1. A header file with the same name as the main file must be included, in this case Matmul.h. This header
file is automatically generated by the binding and it contains other includes and type-definitions that are
required.

2. A call to the compss on binding function is required to turn on the COMPSs runtime.

3. Asin C language, out or inout parameters should be passed by reference by means of the “&” operator before
the parameter name.

4. Synchronization on a parameter can be done calling the compss _wait on binding function. The argument
of this function must be the variable or object we want to synchronize.

5. There is an implicit synchronization in the init method of Matrix. It is not possible to know the address
of “A” before exiting the method call and due to this it is necessary to synchronize before for the copy of the
returned value into “A” for it to be correct.

6. A call to the compss _off binding function is required to turn off the COMPSs runtime.

Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#include "Matmul.h"
#include "Matrixz.h"
#include "Block.h'"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
smatrix = Matrix::init(mSize, nSize, val);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*¥block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

2.2. Write your first app 17

COMPSs Documentation, 3.1

Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

Application Compilation

The user command “compss__build _app” compiles both master and worker for a single architecture (e.g. x86-64,
armhf, etc). Thus, whether you want to run your application in Intel based machine or ARM based machine, this
command is the tool you need.

When the target is the native architecture, the command to execute is very simple;

$~/matmul_objects> compss_build_app Matmul

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64//
—jre/lib/amd64/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

[Info] The target host is: x86_64-linux-gnu

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
<0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -oy
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

Application Execution

The following environment variables must be defined before executing a COMPSs C/C++ application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

After compiling the application, two directories, master and worker, are generated. The master directory contains
a binary called as the main file, which is the master application, in our example is called Matmul. The worker
directory contains another binary called as the main file followed by the suffix “-worker”, which is the worker
application, in our example is called Matmul-worker.

The runcompss script has to be used to run the application:

18 Chapter 2. Quickstart

COMPSs Documentation, 3.1

$ runcompss /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The complete list of options of the runcompss command is available in Section Fzecuting COMPSs applications.

Task Dependency Graph

COMPSs can generate a task dependency graph from an executed code. It is indicating by a

$ runcompss -g /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The generated task dependency graph is stored within the $HOME/ . COMPSs/<APP_NAME>_<00-99>/monitor direc-
tory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot viewer.
COMPSs also provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/Matmul_02/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

The following figure depicts the task dependency graph for the Matmul application in its object version with 3x3
blocks matrices, each one containing a 4x4 matrix of doubles. Each block in the result matrix accumulates three
block multiplications, i.e. three multiplications of 4x4 matrices of doubles.

N = 3, Matrix size
M = 4, Block size

Parallel tasks
[3x3] Matrix = 9 blocks

Each hlock
accumulates 3
[4x4] matrix
multiplications

Implicit
synchronization

Explicit
synchronizations

Figure 3: Matmul Execution Graph.

The light blue circle corresponds to the initialization of matrix “A” by means of a method-task and it has an
implicit synchronization inside. The dark blue circles correspond to the other two initializations by means of
function-tasks; in this case the synchronizations are explicit and must be provided by the developer after the task
call. Both implicit and explicit synchronizations are represented as red circles.

Each green circle is a partial matrix multiplication of a set of 3. One block from matrix “A” and the correspondent
one from matrix “B”. The result is written in the right block in “C” that accumulates the partial block multipli-
cations. Each multiplication set has an explicit synchronization. All green tasks are method-tasks and they are
executed in parallel.

2.2. Write your first app 19

COMPSs Documentation, 3.1

2.3 Useful information

Choose your flavour:
Java

Python

C/C++

Syntax detailed information -> Java

Constraint definition -> Constraints

Execution details -> Ezecuting COMPSs applications

Graph, tracing and monitoring facilities -> Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> Java Sample applications

Using COMPSs with persistent storage frameworks (e.g. dataClay, Hecuba) -> Persistent Storage

Syntax detailed information -> Python Binding

Constraint definition -> Constraints

Execution details -> Ezecuting COMPSs applications

Graph, tracing and monitoring facilities -> Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> Python Sample applications

Using COMPSs with persistent storage frameworks (e.g. dataClay, Hecuba) -> Persistent Storage

Syntax detailed information -> C/C++ Binding

Constraint definition -> Constraints

Execution details -> FEzecuting COMPSs applications

Graph, tracing and monitoring facilities -> Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers
Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> C/C++ Sample applications

20 Chapter 2. Quickstart

Chapter 3

Installation and Administration

This section is intended to walk you through the COMPSs installation.

3.1 Dependencies

Next we provide a list of dependencies for installing COMPSs package. The exact names may vary depending
on the Linux distribution but this list provides a general overview of the COMPSs dependencies. For specific
information about your distribution please check the Depends section at your package manager (apt, yum, zypper,
etc.).

Table 1: COMPSs dependencies

Module Dependencies

COMPSs Runtime openjdk-8-jre, graphviz, xdg-utils, openssh-server

COMPSs Python Binding | libtool, automake, build-essential, python (>=3.6), python3-dev, python3-
setuptools

COMPSs C/C++ Bind- | libtool, automake, build-essential, libboost-all-dev, libxml2-dev
ing
COMPSs Tracing libxml2 (>= 2.5), libxml2-dev (>= 2.5), gfortran, papi

Tip: For macOS, we strongly recommend to use the Homebrew package manager, since it includes the majority
of dependencies needed. In other package managers, such as MacPorts, quite some dependencies may be missing
as packages, which will force you to have to install them from their source codes.

As an example for some distributions and versions:
Ubuntu

OpenSuse

Fedora

Debian

CentOS

20.04

18.04

16.04

Ubuntu 20.04 dependencies installation commands:

21

https://brew.sh/

COMPSs Documentation, 3.1

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential,
—python python-dev python3 python3-dev libboost-serialization-dev libboost-iostreams-dev
—1ibxml2 1libxml2-dev csh gfortran libgmp3-dev flex bison texinfo python3-pip libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

Ubuntu 18.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential,
—python python-dev python3 python3-dev libboost-serialization-dev libboost-iostreams-dev
—1libxml2 libxml2-dev csh gfortran libgmp3-dev flex bison texinfo python3-pip libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

Ubuntu 16.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential,
—libboost-serialization-dev libboost-iostreams-dev 1libxml2 libxml2-dev csh gfortran python-
—pip libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

Tumbleweed
Leap 15.X
42.2

OpenSuse Tumbleweed dependencies installation commands:

22 Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel python3 python3-devel python3-decorator,
—1libtool automake libboost_headersl_71_0-devel libboost_serializationl_71_0 libboost_
—lostreamsl_71_0 1ibxml2-2 libxml2-devel tcsh gcc-fortran papi libpapi gcc-c++ libpapi papi,
—papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

OpenSuse Leap 15.X dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel python-decorator python3 python3-devel python3-
—decorator libtool automake libboost_headersl_66_0-devel libboost_serializationl_66_0
—libboost_iostreams1_66_0 1ibxml2-2 libxml2-devel tcsh gcc-fortran papi libpapi gcc-c++
—libpapi papi papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

OpenSuse 42.2 dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel libpython2_7-1_0 python-decorator libtoolj,
—automake boost-devel libboost_serializationl_54_0 libboost_iostreams1_54_0 libxml2-2
—1libxml2-devel tcsh gcc-fortran python-pip papi libpapi gcc-c++ libpapi papi papi-devel gmp-
—devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Warning: OpenSuse provides Python 3.4 from its repositories, which is not supported by the COMPSs
python binding. Please, update Python 3 (python and python-devel) to a higher version if you expect to
install COMPSs from sources.

Alternatively, you can use a virtual environment.

3.1. Dependencies 23

COMPSs Documentation, 3.1

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

32
25

Fedora 32 dependencies installation commands:

$ sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool,
—automake python27 python3 python3-devel boost-devel boost-serialization boost-iostreams,
—1ibxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh @development-tools bison flex texinfo,
—papi papi-devel gmp-devel

$ # If the libazml softlink is not created during the installation of libzml2, the COMPSs,
—nstallation may fail.

$ # In this case, the softlink has to be created manually with the following command:

$ sudo 1ln -s /usr/include/libxml2/libxml/ /usr/include/libxml

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/

Fedora 25 dependencies installation commands:

$ sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool
—automake python python-libs python-pip python-devel python2-decorator boost-devel boost-
—serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcshj
—@development-tools redhat-rpm-config papi

$ # If the libzml softlink is not created during the installation of libzml2, the COMPSs,
—1installation may fail.

$ # In this case, the softlink has to be created manually with the following command:

$ sudo 1ln -s /usr/include/1libxml2/libxml/ /usr/include/libxml

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/

24 Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

Debian 8 dependencies installation commands:

$ su -

$ echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee /etc/apt/
—sources.list.d/webupd8team-java.list

$ echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee -a /etc/
—apt/sources.list.d/webupd8team-java.list

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886

apt-get update

apt-get install oracle-java8-installer

apt-get install graphviz xdg-utils libtool automake build-essential python python-decorator
—python-pip python-dev libboost-serializationl1.55.0 libboost-iostreams1.55.0 1libxml2 libxml2-
—dev libboost-dev csh gfortran papi-tools

$ wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-
—bin.zip

$ unzip /opt/gradle-5.4.1-bin.zip -d /opt

“H AH P P

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). A
possible value is the following:

$ echo $JAVA_HOME
/usr/1ib64/jvm/java-openjdk/

So, please, check its location, export this variable and include it into your .bashrc if it is not already available
with the previous command.

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/

7

CentOS 7 dependencies installation commands:

$ sudo rpm -iUvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

$ sudo yum -y update

$ sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool,,
—automake python python-libs python-pip python-devel python2-decorator boost-devel boost-
—serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcshy
—@development-tools redhat-rpm-config papi

$ sudo pip install decorator

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). A
possible value is the following:

$ echo $JAVA_HOME
/usr/1ib64/jvm/java-openjdk/

So, please, check its location, export this variable and include it into your .bashrc if it is not already available
with the previous command.

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/

macOS Monterey

macOS Monterey dependencies installation commands:

3.1. Dependencies 25

COMPSs Documentation, 3.1

Although many packages can be installed with Homebrew, some of them will have to be installed manually
from their source files. It is also important to mention that, some package names may be slightly different in
Homebrew, compared to Linux distributions, thus, some previous search for equivalences may be required. Our
tested installation sequence was:

$ brew install openjdk@8 graphviz libxslt xmlto libtool automake coreutils util-linux boost
$ sudo 1ln -sfn /usr/local/opt/openjdk@8/libexec/openjdk.jdk /Library/Java/JavaVirtualMachines/
—openjdk-8. jdk

And xdg-utils had to be installed by hand (after installing libxslt and xmlto):

$ export XML_CATALOG_FILES="/usr/local/etc/xml/catalog"
$ git clone git://anongit.freedesktop.org/xdg/xdg-utils
$ cd xdg-utils

$./configure --prefix=/usr/local

$ make ; make install

Warning: Tracing is not yet available for macOS, therefore, its dependencies do not need to be installed.

Attention: Before installing it is also necessary to export the GRADLE_HOME environment variable and include
its binaries path into the PATH environment variable:

$ echo 'export GRADLE_HOME=/opt/gradle-5.4.1' >> ~/.bashrc

$ export GRADLE_HOME=/opt/gradle-5.4.1

$ echo 'export PATH=/opt/gradle-5.4.1/bin:$PATH' >> ~/.bashrc
$ export PATH=/opt/gradle-5.4.1/bin:$PATH

Important: Python version 3.8 or higher is recommended since some of the Python binding features are only
supported in these Python versions (e.g. worker cache)

3.1.1 Build Dependencies

To build COMPSs from sources you will also need wget, git and maven (maven web). To install with Pip, pip for
the target Python version is required.

3.1.2 Optional Dependencies

For the Python binding it is recommended to have dill (dill project), guppy3 (guppy3 project) and numpy (numpy
project <https://pypi.org/project/numpy/>) installed:

e The dill package increases the variety of serializable objects by Python (for example: lambda functions)

e The guppy3 package is needed to use the @local decorator.

e The numpy package is useful to improve the serialization/deserialization performance since its internal mech-
anisms are used by the Python binding.

These packages can be found in PyPI and can be installed via pip.

Since it is possible to execute python applications using workers spawning MPI processes instead of multiprocessing,
it is necessary to have openmpi, openmpi-devel and openmpi-libs system packages installed and mpidpy with

pip.

26 Chapter 3. Installation and Administration

https://maven.apache.org/
https://pypi.org/project/dill/
https://pypi.org/project/guppy3/
https://pypi.org/project/numpy/

COMPSs Documentation, 3.1

3.2 Building from sources

This section describes the steps to install COMPSs from the sources.

The first step is downloading the source code from the Git repository.

$ git clone https://github.com/bsc-wdc/compss.git
$ cd compss

Then, you need to download the embedded dependencies from the git submodules.

$ compss> ./submodules_get.sh

Warning: Before running the installation script in macOS distributions, some previous definitions need to
be done:

$ alias readlink=/usr/local/bin/greadlink

$ export LIBTOOL="which glibtool~”

$ export LIBTOOLIZE="which glibtoolize”

$ export JAVA_HOME=/usr/local/cellar/openjdk@8/1.8.0+282/1libexec/openjdk.jdk/Contents/Home

Finally you just need to run the installation script. You have two options:
For all users
For the current user

For installing COMPSs for all users run the following command:

$ compss> cd builders/
$ builders> export INSTALL_DIR=/opt/COMPSs/
$ builders> sudo -E ./buildlocal ${INSTALL_DIR}

Attention: Root access is required.

For installing COMPSs for the current user run the following commands:

$ compss> cd builders/
$ builders> INSTALL_DIR=$HOME/opt/COMPSs/
$ builders> ./buildlocal ${INSTALL_DIR}

Warning: In macOS distributions, the System Integrity Protection (SIP) does not allow to modify the
/System folder even with root permissions. This means the installation building from sources can only be
installed for the current user.

Tip: The buildlocal script allows to disable the installation of components. The options can be found in the
command help:

$ compss> cd builders/
$ builders> ./buildlocal -h

Usage: ./buildlocal [options] targetDir
* Options:

(continues on next page)

3.2. Building from sources 27

COMPSs Documentation, 3.1

(continued from previous page)

--help, -h
--opts
--version, -v
--monitor, -m

--no-monitor, -M

--bindings, -b
--no-bindings, -B

--pycompss, -p
--no-pycompss, -P

--tracing, -t
--no-tracing, -T

--kafka, -k
--no-kafka, -K

--jacoco, -j
--no-jacoco, -J

--dlb, -d
--no-dlb, -D
--cli, -c

--no-cli, -C

--nothing, -N

--user-exec=<str>

--skip-tests

* Parameters:
targetDir

Print this help message
Show available options

Print COMPSs version

Enable Monitor installation
Disable Monitor installation

Default: true

Enable bindings installation

Disable bindings installation

Default: true

Enable PyCOMPSs installation

Disable PyCOMPSs installation

Default: true

Enable tracing system installation
Disable tracing system installation

Default: true

Enable Kafka module installation
Disable Kafka module installation

Default: true

Enable Jacoco module installation
Disable Jacoco module installation

Default: true

Enable dlb module installation
Disable dlb module installation

Default: true

Enable Command Line Interface module installation
Disable Command Line Interface module installation

Default: true

Disable all previous options

Default: unused

Enables a specific user execution for maven compilation
When used the maven install is not cleaned.

Default: false

Disables MVN unit tests
Default:

COMPSs installation directory

Default: /opt/COMPSs

Warning: Components Tracing, Kafka, Jacoco and DLB cannot be installed in macOS distributions. There-
fore, at least options -T -K -J -D must be used when invoking buildlocal

28

Chapter 3.

Installation and Administration

COMPSs Documentation, 3.1

3.2.1 Post installation

Once your COMPSs package has been installed remember to log out and back in again to end the installation
process.

Caution: Using Ubuntu version 18.04 or higher requires to comment the following lines in your .bashrc in
order to have the appropriate environment after logging out and back again (which in these distributions it
must be from the complete system (e.g. gnome) not only from the terminal, or restart the whole machine).

If not running interactively, don't do anything

case $- in

¥T) 5 # Comment these lines before logging out

*) return;; # from the whole gnome (or restart the machine).
esac

In addition, COMPSs requires ssh passwordless access. If you need to set up your machine for the first time
please take a look at Additional Configuration Section for a detailed description of the additional configuration.

3.3 Pip

3.3.1 Pre-requisites

In order to be able to install COMPSs and PyCOMPSs with Pip, the dependencies (excluding the COMPSs
packages) mentioned in the Dependencies Section must be satisfied (do not forget to have proper JAVA_HOME and
GRADLE_HOME environment variables pointing to the java JDK folder and Gradle home respectively, as well as the
gradle binary in the PATH environment variable) and Python pip.

3.3.2 Installation

Depending on the machine, the installation command may vary. Some of the possible scenarios and their proper
installation command are:

Install systemwide

Install in user local folder

Within a virtual environment

Install systemwide:

$ sudo -E pip install pycompss -v

Attention: Root access is required.

It is recommended to restart the user session once the installation process has finished. Alternatively, the following
command sets all the COMPSs environment in the current session.

$ source /etc/profile.d/compss.sh

Install in user home folder (.local):

3.3. Pip 29

COMPSs Documentation, 3.1

$ pip install pycompss -v

It is recommended to restart the user session once the installation process has finished. Alternatively, the following
command sets all the COMPSs environment.

$ source ~/.bashrc

Within a Python virtual environment:

(virtualenv) $ pip install pycompss -v

In this particular case, the installation includes the necessary variables in the activate script. So, restart the virtual
environment in order to set all the COMPSs environment.

3.3.3 Post installation

If you need to set up your machine for the first time please take a look at Additional Configuration Section for a
detailed description of the additional configuration.

3.4 Supercomputers

The COMPSs Framework can be installed in any Supercomputer by installing its packages as in a normal dis-
tribution. The packages are ready to be reallocated so the administrators can choose the right location for the
COMPSs installation.

However, if the administrators are not willing to install COMPSs through the packaging system, we also provide a
COMPSs zipped file containing a pre-build script to easily install COMPSs. Next subsections provide further
information about this process.

3.4.1 Prerequisites
In order to successfully run the installation script some dependencies must be present on the target machine.
Administrators must provide the correct installation and environment of the following software:

e Autotools
e BOOST
e Java 8 JRE

The following environment variables must be defined:

e JAVA HOME
e BOOST_CPPFLAGS

The tracing system can be enhanced with:

e PAPI, which provides support for harware counters
e MPI, which speeds up the tracing merge (and enables it for huge traces)

30 Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

3.4.2 Installation

To perform the COMPSs Framework installation please execute the following commands:

$ # Check out the last COMPSs release
$ wget http://compss.bsc.es/repo/sc/stable/COMPSs_<version>.tar.gz

$ # Unpackage COMPSs
$ tar -xvzf COMPSs_<version>.tar.gz

$ # Install COMPSs at your preferred target location
$ cd COMPSs
$./install [options] <targetDir> [<supercomputer.cfg>]

$ # Clean downloaded files
rm -r COMPSs
rm COMPSs_<version>.tar.gz

The installation script will install COMPSs inside the given <targetDir> folder and it will copy the
<supercomputer.cfg> as default configuration. It also provides some options to skip the installation of op-
tional features or bound the installation to an specific python version. You can see the available options with the
following command.

$./install --help

Attention: If the <targetDir> folder already exists it will be automatically erased.

After completing the previous steps, administrators must ensure that the nodes have passwordless ssh access. If
it is not the case, please contact the COMPSs team at support-compss@bsc.es.

The COMPSs package also provides a compssenv file that loads the required environment to allow users work more
easily with COMPSs. Thus, after the installation process we recommend to source the <targetDir>/compssenv
into the users .bashre.

Once done, remember to log out and back in again to end the installation process.

3.4.3 Configuration

To maintain the portability between different environments, COMPSs has a pre-built structure of scripts to execute
applications in Supercomputers. For this purpose, users must use the enqueue_compss script provided in the
COMPSs installation and specify the supercomputer configuration with --sc_cfg flag.

When installing COMPSs for a supercomputer, system administrators must define a configuration file for the
specific Supercomputer parameters. This document gives and overview about how to modify the configuration
files in order to customize the enqueue compss for a specific queue system and supercomputer. As overview,
the easier way to proceed when creating a new configuration is to modify one of the configurations provided by
COMPSs. System sdministrators can find configurations for LSF, SLURM, PBS and SGE as well as several
examples for Supercomputer configurations in <installation_dir>/Runtime/scripts/queues. For instance, the
configuration for the MareNostrum IV Supercomputer and the Slurm queue system, can be used as base file for
new supercomputer and queue system cfgs. Sysadmins can modify these files by changing the flags, parameters,
paths and default values that corresponds to your supercomputer. Once, the files have been modified, they must
be copied to the queues folder to make them available to the users. The following paragraph describe more in
detail the scripts and configuration files If you need help, contact support-compss@bsc.es.

3.4. Supercomputers 31

mailto:support-compss@bsc.es
mailto:support-compss@bsc.es

COMPSs Documentation, 3.1

3.4.3.1 COMPSs Queue structure overview

All the scripts and cfg files shown in Figure 4 are located in the <installation_dir>/Runtime/scripts/ folder.
enqueue_compss and launch_compss (launch.sh in the figure) are in the user subfolder and submit.sh and
the cfgs are located in queues. There are two types of cfg files: the queue system cfg files, which are located in
queues/queue_systems; and the supercomputers.cfqg files, which are located in queues/supercomputers.

Figure 4: Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts and in Orange system
dependant scripts

3.4.3.2 Configuration Files

The cfg files contain a set of bash variables which are used by the other scripts. On the one hand, the queue
system cfgs contain the variables to indicate the commands used by the system to submit and spawn processes, the
commands or variables to get the allocated nodes and the directives to indicate the number of nodes, processes,
etc. Below you can see an example of the most important variable definition for Slurm

File: Runtime/scripts/queues/queue_systems/slurm.cfgq

HARBHAARBRHAARRHAARRRHARRRAAARRHS

SUBMISSION VARIABLES

HARRHHAARBRRARBRHAARRIHRAR BRI RERE

Variables to define the queue system directives.

The are built as #${QUEUE_CMD} ${QARG_*}${QUEUE_SEPARATOR}value (submit.sh)
QUEUE_CMD="SBATCH"

SUBMISSION_CMD="sbatch"

SUBMISSION_PIPE="< "

SUBMISSION_HET_SEPARATOR=' : '

SUBMISSION_HET_PIPE=" "

Vartables to customize the commands know job td and allocated nodes (submit.sh)
ENV_VAR_JOB_ID="SLURM_JOB_ID"
ENV_VAR_NODE_LIST="SLURM_JOB_NODELIST"

QUEUE_SEPARATOR=""
EMPTY_WC_LIMIT=":00"

QARG_JOB_NAME="--job-name="
QARG_JOB_DEP_INLINE="false"
QARG_JOB_DEPENDENCY_OPEN="--dependency=afterany:"
QARG_JOB_DEPENDENCY_CLOSE=""

QARG_JOB_0OUT="-0 "

QARG_JOB_ERROR="-e "
QARG_WD="--workdir="
QARG_WALLCLOCK="-t"

(continues on next page)

32 Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

(continued from previous page)

QARG_NUM_NODES="-N"

QARG_NUM_PROCESSES="-n"

QNUM_PROCESSES_VALUE="\$ (expr \${num_nodes} * \${req_cpus_per_nodel})"
QARG_EXCLUSIVE_NODES="--exclusive"

QARG_SPAN=""

QARG_MEMORY="--mem="
QARG_QUEUE_SELECTION="-p "
QARG_NUM_SWITCHES="--gres="
QARG_GPUS_PER_NODE="--gres gpu:"
QARG_RESERVATION="--reservation="
QARG_CONSTRAINTS="--constraint="
QARG_QOS="--qos="
QARG_QVERCOMMIT="--overcommit"
QARG_CPUS_PER_TASK="-c"
QJOB_ID="%J"
QARG_PACKJOB="packjob"

HARARAARRRRRRRRRRRHRRAAAAAARRRRRS

LAUNCH VARIABLES

HARRAAARRRRRRRRRRRRRAAAAAARRRRRE

Variables to customize worker process spawn inside the job (launch_compss)
LAUNCH_CMD="srun"

LAUNCH_PARAMS="-n1 -N1 --nodelist="

LAUNCH_SEPARATOR=""

CMD_SEPARATOR=""

HOSTLIST_CMD="scontrol show hostname"

HOSTLIST_TREATMENT="| awk {' print \$1 '} | sed -e 's/\.["\ 1x//g'"

HARARAAARRRRRRRRRRRARAAAAAARARRRS

QUEUE VARIABLES

- Used in interactive

- Substitute the [JOBID] keyword with the real job identifier dinamically
HARRAARRRRRRRBRRRBRRRRR AR RRRE
QUEUE_JOB_STATUS_CMD="squeue -h -o %T --job %JOBID}"
QUEUE_JOB_RUNNING_TAG="RUNNING"
QUEUE_JOB_NODES_CMD="squeue -h -o %N --job %JOBID}"
QUEUE_JOB_CANCEL_CMD="scancel %JOBID%"
QUEUE_JOB_LIST_CMD="squeue -h -o %i"
QUEUE_JOB_NAME_CMD="squeue -h -o %j --job %JOBID}"

HERBHRRRRHRARRRARRRRARRRARRRRAHH
CONTACT VARIABLES
HURBHRRRBHRRGRRRRRRR AR R AR RRR R G
CONTACT_CMD="ssh"

To adapt this script to your queue system, you just need to change the variable value to the command, argument
or value required in your system. If you find that some of this variables are not available in your system, leave it
empty.

On the other hand, the supercomputers cfg files contains a set of variables to indicate the queue system used by a
supercomputer, paths where the shared disk is mounted, the default values that COMPSs will set in the project
and resources files when they are not set by the user and flags to indicate if a functionality is available or not in a
supercomputer. The following lines show examples of this variables for the MareNostrum IV supercomputer.

File: Runtime/scripts/queues/supercomputers/mn.cfg

(continues on next page)

3.4. Supercomputers 33

COMPSs Documentation, 3.1

(continued from previous page)

HURBHRRRBHRRBRRRARRRRRRRARRRR R G
STRUCTURE VARIABLES
HERARRAARRRAARRAARBRAARRAARRRAHH
QUEUE_SYSTEM="slurm"

HABRBRARRARRERRRARRRRRRRRRARRHERH

ENQUEUE_COMPSS VARIABLES
HABRBBHRBRRBBRRRARB B R BB R BB ARG IR H
DEFAULT_EXEC_TIME=10
DEFAULT_NUM_NODES=2
DEFAULT_NUM_SWITCHES=0
MAX_NODES_SWITCH=18
MIN_NODES_REQ_SWITCH=4
DEFAULT_QUEUE=default
DEFAULT_MAX_TASKS_PER_NODE=-1
DEFAULT_CPUS_PER_NODE=48
DEFAULT_IO_EXECUTORS=0
DEFAULT_GPUS_PER_NODE=0
DEFAULT_FPGAS_PER_NODE=0
DEFAULT_WORKER_IN_MASTER_CPUS=24
DEFAULT_WORKER_IN_MASTER_MEMORY=50000
DEFAULT_MASTER_WORKING_DIR=.
DEFAULT_WORKER_WORKING_DIR=local_disk
DEFAULT_NETWORK=infiniband
DEFAULT_DEPENDENCY_JOB=None
DEFAULT_RESERVATION=disabled
DEFAULT_NODE_MEMORY=disabled
DEFAULT_JVM_MASTER=""
DEFAULT_JVM_WORKERS="-Xms16000m, -Xmx92000m, -Xmn1600m"
DEFAULT_JVM_WORKER_IN_MASTER=""
DEFAULT_QOS=default
DEFAULT_CONSTRAINTS=disabled

HARRHRARBHRARBRRARARRIRARRRHRARERHE
Enabling/disabling passing

requirements to queue system
HARBHAARBHHRAARRHAARRIAARRRHARRRHS
DISABLE_QARG_MEMORY=true
DISABLE_QARG_CONSTRAINTS=false
DISABLE_QARG_QOS=false
DISABLE_QARG_OVERCOMMIT=true
DISABLE_QARG_CPUS_PER_TASK=false
DISABLE_QARG_NVRAM=true
HETEROGENEOUS_MULTIJOB=false

HERARRBARRRAARRAARBRAARRARRRRARH
SUBMISSION VARIABLES
HERBHRRRRHRABHRARRRRARRRARRRR R RS
MINIMUM_NUM_NODES=1
MINIMUM_CPUS_PER_NODE=1
DEFAULT_STORAGE_HOME="null"
DISABLED_STORAGE_HOME="null"

HERBHRRRBHRRBHRARRRRRRRRARRRR GG
LAUNCH VARIABLES
HERBRRAARRRAARRAARBRAARRAARRHRRHH

(continues on next page)

34 Chapter 3.

Installation and Administration

COMPSs Documentation, 3.1

(continued from previous page)

LOCAL_DISK_PREFIX="/scratch/tmp"

REMOTE_EXECUTOR="none" # Disable the ssh spawn at runtime

NETWORK_INFINIBAND_SUFFIX="-ib0" # Hostname suffixz to add in order to use infiniband network
NETWORK_DATA_SUFFIX="-data" # Hostname suffiz to add in order to use data network
SHARED_DISK_PREFIX="/gpfs/"

SHARED_DISK_2_PREFIX="/.statelite/tmpfs/gpfs/"

DEFAULT_NODE_MEMORY_SIZE=92

DEFAULT _NODE_STORAGE_BANDWIDTH=450

MASTER_NAME_CMD=hostname # Command to know the mastername

ELASTICITY_BATCH=true

To adapt this script to your supercomputer, you just need to change the variables to commands paths or values
which are set in your system. If you find that some of this values are not available in your system, leave them
empty or as they are in the MareNostrum IV.

3.4.3.3 How are cfg files used in scripts?

The submit.sh is in charge of getting some of the arguments from enqueue_compss, generating the a temporal job
submission script for the queue system (function create_normal tmp submit) and performing the submission in
the scheduler (function submit). The functions used in submit.sh are implemented in common.sh. If you look at
the code of this script, you will see that most of the code is customized by a set of bash vars which are mainly
defined in the cfg files.

For instance the submit command is customized in the following way:

eval ${SUBMISSION_CMD} ${SUBMISSION_PIPE}${TMP_SUBMIT_SCRIPT}

Where ${SUBMISSION_CMD} and ${SUBMISSION_PIPE} are defined in the queue_system.cfg. So, for the case of
Slurm, at execution time it is translated to something like sbatch < /tmp/tmp_submit_script

The same approach is used for the queue system directives defined in the submission script or in the command to
get the assigned host list.

The following lines show the examples in these cases.

#${QUEUE_CMD} ${QARG_JOB_NAME}${QUEUE_SEPARATOR}${job_name}

In the case of Slurm in MN, it generates something like #SBATCH --job-name=COMPSs

host_1ist=\$ (${HOSTLIST_CMD} \$${ENV_VAR_NODE_LIST}${env_var_suffix} ${HOSTLIST_TREATMENT})

The same approach is used in the launch_compss script where it is using the defined vars to customize the
project.xml and resources.xml file generation and spawning the master and worker processes in the assigned re-
sources.

At first, you should not need to modify any script. The goal of the cfg files is that sysadmins just require to modify
the supercomputers cfg, and in the case that the used queue system is not in the queue_ systems, folder it should
create a new one for the new one.

If you think that some of the features of your system are not supported in the current implementation, please
contact us at support-compss@bsc.es. We will discuss how it should be incorporated in the scripts.

3.4. Supercomputers 35

mailto:support-compss@bsc.es

COMPSs Documentation, 3.1

3.4.4 Post installation

To check that COMPSs Framework has been successfully installed you may run:

$ # Check the COMPSs wversion
$ runcompss -v
COMPSs version <version>

For queue system executions, COMPSs provides several prebuild queue scripts than can be accessible throgh the
enqueue_ compss command. Users can check the available options by running:

$ enqueue_compss -h

Usage: /apps/COMPSs/2.9/Runtime/scripts/user/enqueue_compss [queue_system_options] [COMPSs_
—options] application_name application_arguments

* Options:
General:
--help, -h
--heterogeneous

Queue system configuration:
--sc_cfg=<name>
—exist inside queues/cfgs/

Submission configuration:
General submision arguments:
--exec_time=<minutes>
—minutes)

--job_name=<name>

--queue=<name>
—queue system.

—interactive
--reservation=<name>
--constraints=<constraints>
--qos=<qgos>

--cpus_per_task
—allocate per task.

—in a worker node and
—node respectively.

--job_dependency=<jobID>
—has ended.

--storage_home=<string>
—implementation

--storage_props=<string>

Print this help message
Indicates submission is going to be heterogeneous
Default: Disabled

SuperComputer configuration file to use. Must

Default: default

Expected execution time of the application (in,

Default: 10

Job name

Default: COMPSs

Queue name to submit the job. Depends on the

For example (MN3): bsc_cs | bsc_debug | debug |,

Default: default
Reservation to use when submitting the job.
Default: disabled

Constraints to pass to queue system.

Default: disabled

Quality of Service to pass to the queue system.
Default: default
Number of cpus per task the queue system must

Note that this will be equal to the cpus_per_node
equal to the worker_in_master_cpus in a mastery

Default: false
Postpone job execution until the job dependency

Default: None
Root installation dir of the storage,

Default: null
Absolute path of the storage properties file

(continues on next page)

36

Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

(continued from previous page)

Normal submission arguments:
--num_nodes=<int>

--num_switches=<int>
—for no restrictions.

--agents=<string>
—values: plain|tree

--agents
—classic Master-Worker deployment.

Heterogeneous submission arguments:

--type_cfg=<file_location>
—node type requests

--master=<master_node_type>
—type_cfg flag)
--workers=type_X:nodes,type_Y:nodes
—workers
—type_cfg flag)

Launch configuration:
--cpus_per_node=<int>
--gpus_per_node=<int>
--fpgas_per_node=<int>

--io_executors=<int>

--fpga_reprogram="<string>
—executed to reprogram the FPGA with

—absolute path.

--max_tasks_per_node=<int>
—node

--node_memory=<MB>

--node_storage_bandwidth=<MB>

Mandatory if storage_home is defined

Number of nodes to use
Default: 2
Maximum number of different switches. Select O,

Maximum nodes per switch: 18

Only available for at least 4 nodes.

Default: O

Hierarchy of agents for the deployment. Acceptedy

Default: tree
Deploys the runtime as agents instead of they,

Default: disabled
Location of the file with the descriptions of,

File should follow the following format:
type_XO{

cpus_per_node=24

node_memory=96

¥
type_YO{

X
Node type for the master
(Node type descriptions are provided in the --

Node type and number of nodes per type for the,

(Node type descriptions are provided in the --

Available CPU computing units on each node
Default: 48

Available GPU computing units on each node
Default: O

Available FPGA computing units on each node
Default: O

Number of IO executors on each node
Default: O

Specify the full command that needs to bey

the desired bitstream. The location must be ang

Default:
Maximum number of simultaneous tasks running on a

Default: -1

Maximum node memory: disabled | <int> (MB)
Default: disabled

Maximum node storage bandwidth: <int> (MB)
Default: 450

(continues on next page)

3.4. Supercomputers

37

COMPSs Documentation, 3.1

(continued from previous page)

--network=<name> Communication network for transfers: default |,
—ethernet | infiniband | data.
Default: infiniband

--prolog="<string>" Task to execute before launching COMPSs (Noticey,
—the quotes)
If the task has arguments split them by ",",
—rather than spaces.
This argument can appear multiple times for more,
—than one prolog action
Default: Empty
--epilog="<string>" Task to execute after executing the COMPSsy
—application (Notice the quotes)
If the task has arguments split them by ",",
—rather than spaces.
This argument can appear multiple times for more
—than one epilog action
Default: Empty

--master_working_dir=<path> Working directory of the application
Default:
--worker_working_dir=<name | path> Worker directory. Use: local_disk | shared_disk |
—<path>

Default: local_disk

--worker_in_master_cpus=<int> Maximum number of CPU computing units that they
—master node can run as worker. Cannot exceed cpus_per_node.
Default: 24
--worker_in_master_memory=<int> MB Maximum memory in master node assigned to the

—worker. Cannot exceed the node_memory.
Mandatory if worker_in_master_cpus is specified.
Default: 50000
--worker_port_range=<min>,<max> Port range used by the NIO adaptor at the workerj
—side
Default: 43001,43005
--jvm_worker_in_master_opts="<string>" Extra options for the JVM of the COMPSs Worker in
—the Master Node.

Each option separed by "," and without blank,
—spaces (Notice the quotes)
Default:
--container_image=<path> Runs the application by means of a containery

—engine image
Default: Empty

--container_compss_path=<path> Path where compss is installed in the container
—image
Default: /opt/COMPSs
--container_opts="<string>" Options to pass to the container engine
Default: empty
--elasticity=<max_extra_nodes> Activate elasticity specifiying the maximum extra
—nodes (ONLY AVAILABLE FORM SLURM CLUSTERS WITH NIO ADAPTOR)
Default: O
--automatic_scaling=<bool> Enable or disable the runtime automatic scaling,

— (for elasticity)
Default: true
--jupyter_notebook=<path>, Swap the COMPSs master initialization with,
—jupyter notebook from the specified path.

(continues on next page)

38 Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

(continued from previous page)

--jupyter_notebook
--ipython
—ipython.

Runcompss configuration:

Tools enablers:
--graph=<bool>, --graph, -g

--tracing=<level>, --tracing, -t

Default: false
Swap the COMPSs master initialization withy

Default: empty

Generation of the complete graph (true/false)

When no value is provided it is set to true
Default: false

Set generation of traces and/or tracing level ([,

—true | basic] | advanced | scorep | arm-map | arm-ddt | false)

—traces.

--monitoring=<int>, --monitoring, -m

--external_debugger=<int>,
--external_debugger
—specified port (or 9999 if empty)

--jmx_port=<int>

Runtime configuration options:
--task_execution=<compss|storage>

--storage_impl=<string>

True and basic levels will produce the same(

When no value is provided it is set to 1
Default: O

Period between monitoring samples (milliseconds)
When no value is provided it is set to 2000
Default: O

Enables external debugger connection on they

Default: false
Enable JVM profiling on specified port

Task execution under COMPSs or Storage.
Default: compss
Path to an storage implementation. Shortcut toy

—setting pypath and classpath. See Runtime/storage in your installation folder.

--storage_conf=<path>
--project=<path>

—xml/projects/default_project.xml
--resources=<path>

—xml/resources/default_resources.xml
--lang=<name>

--summary
—the application execution

--log_level=<level>, --debug, -d
—trace

—disabling asserts and __debug__

Advanced options:
--extrae_config_file=<path>

—shared disk between all COMPSs workers.

Path to the storage configuration file

Default: null

Path to the project XML file

Default: /apps/COMPSs/2.9//Runtime/configuration/

Path to the resources XML file
Default: /apps/COMPSs/2.9//Runtime/configuration/

Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java

Displays a task execution summary at the end of,

Default: false
Set the debug level: off | info | api | debug |,

Warning: Off level compiles with -02 optiong

Default: off

Sets a custom extrae config file. Must be in a

Default: null

(continues on next page)

3.4. Supercomputers

39

COMPSs Documentation, 3.1

(continued from previous page)

--trace_label=<string>

—used in the case of tracing is activated.

--comm=<ClassName>
—communications

--conn=<className>
—~the cloud
—DefaultSSHConnector
—DefaultNoSSHConnector
—DefaultSSHConnector
--streaming=<type>
--streaming_master_name=<str>
--streaming_master_port=<int>

--scheduler=<className>

—fifodatalocation.FIFODatalLoctionScheduler

—FIFOScheduler

—FIFODataScheduler

—LIFOScheduler

—TaskScheduler

—LoadBalancingScheduler

—LoadBalancingScheduler
--scheduler_config_file=<path>

—configuration.

--library_path=<path>

—(e.g. Java JVM library, Python library, C

--classpath=<path>
--appdir=<path>

--pythonpath=<path>
—PYTHONPATH

--base_log_dir=<path>

Add a label in the generated trace file. Onlyy,

Default: None
Class that implements the adaptor forg,

Supported adaptors:
es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor

Default: es.bsc.compss.nio.master.NIOAdaptor

Class that implements the runtime connector fory

Supported connectors:
es.bsc.compss.connectors.

L— es.bsc.compss.connectors.
Default: es.bsc.compss.connectors.

Enable the streaming mode for the given type.
Supported types: FILES, OBJECTS, PSCOS, ALL, NONE
Default: NONE
Use an specific streaming master node name.
Default: null
Use an specific port for the streaming master.
Default: null
Class that implements the Scheduler for COMPSs
Supported schedulers:

F—— es.bsc.compss.scheduler.

F—— es.bsc.compss.scheduler.fifonew.

F—— es.bsc.compss.scheduler.fifodatanew.

F—— es.bsc.compss.scheduler.lifonew.

F—— es.bsc.compss.components.impl.

L es.bsc.compss.scheduler.loadbalancing.
Default: es.bsc.compss.scheduler.loadbalancing.
Path to the file which contains the scheduler
Default: Empty
Non-standard directories to search for libraries
binding library)

Default: Working Directory

Path for the application classes / modules
Default: Working Directory

Path for the application class folder.
Default: /home/group/user

Additional folders or paths to add to they

Default: /home/group/user
Base directory to store COMPSs log files (a .

—COMPSs/ folder will be created inside this location)

(continues on next page)

40

Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

(continued from previous page)

Default: User home
--specific_log_dir=<path> Use a specific directory to store COMPSs log,
—files (no sandbox is created)
Warning: Overwrites --base_log_dir option
Default: Disabled

--uuid=<int> Preset an application UUID
Default: Automatic random generation
--master_name=<string> Hostname of the node to run the COMPSs master
Default:
--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor
Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Eachy
—option separed by "," and without blank spaces (Notice the quotes)
Default:
--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Each,

—option separed by "," and without blank spaces (Notice the quotes)
Default: -Xms1024m,-Xmx1024m,-Xmn400m
--cpu_affinity="<string>" Sets the CPU affinity for the workers
Supported options: disabled, automatic, user|
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--gpu_affinity="<string>" Sets the GPU affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_affinity="<string>" Sets the FPGA affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_reprogram="<string>" Specify the full command that needs to bey
—executed to reprogram the FPGA with the desired bitstream. The location must be an absolute,
—path.

Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of,
—different functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input,

—application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile
—at the end of the execution
Default: Empty
--PyObject_serialize=<bool> Only for Python Binding. Enable the object
—serialization to string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent worker,
—in ¢ (true/false).
Default: false
--enable_external _adaptation=<bool> Enable external adaptation. This option will
—disable the Resource Optimizer.
Default: false
--gen_coredump Enable master coredump generation
Default: false

(continues on next page)

3.4. Supercomputers 41

COMPSs Documentation, 3.1

(continued from previous page)

--python_interpreter=<string> Python interpreter to use (python/python2/
—python3) .
Default: python Version: 2
--python_propagate_virtual_environment=<true> Propagate the master virtual environment,
—to the workers (true/false).
Default: true
--python_mpi_worker=<false> Use MPI to run the python worker instead of,
omultiprocessing. (true/false).
Default: false
--python_memory_profile Generate a memory profile of the master.
Default: false

* Application name:
For Java applications: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

* Application arguments:
Command line arguments to pass to the application. Can be empty.

If none of the pre-build queue configurations adapts to your infrastructure (Isf, pbs, slurm, etc.) please contact
the COMPSs team at support-compss@bsc.es to find out a solution.

If you are willing to test the COMPSs Framework installation you can run any of the applications available at our
application repository https://github.com/bsc-wdc/apps. We suggest to run the java simple application following
the steps listed inside its README file.

For further information about either the installation or the usage please check the README file inside the COMPSs
package.

3.5 Additional Configuration

3.5.1 Configure SSH passwordless

By default, COMPSs uses SSH libraries for communication between nodes. Consequently, after COMPSs is
installed on a set of machines, the SSH keys must be configured on those machines so that COMPSs can establish
passwordless connections between them. This requires to install the OpenSSH package (if not present already)
and follow these steps on each machine:

1. Generate an SSH key pair

$ ssh-keygen -t rsa

2. Distribute the public key to all the other machines and configure it as authorized

$ # For every other available machine (MACHINE):
$ scp "/.ssh/id_rsa.pub MACHINE:./myRSA.pub
$ ssh MACHINE "cat ./myRSA.pub >> ~/.ssh/authorized_keys; rm ./myRSA.pub"

3. Check that passwordless SSH connections are working fine

$ # For every other available machine (MACHINE):
$ ssh MACHINE

For example, considering the cluster shown in Figure 5, users will have to execute the following commands to grant
free ssh access between any pair of machines:

42 Chapter 3. Installation and Administration

mailto:support-compss@bsc.es
https://github.com/bsc-wdc/apps

COMPSs Documentation, 3.1

me@localhost:~$ ssh-keygen -t id_rsa

Granting access localhost -> ml.bsc.es

me@localhost:~$ scp ~/.ssh/id_rsa.pub user_ml@ml.bsc.es:./me_localhost.pub

me@localhost:”$ ssh user_ml@ml.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./
—me_localhost.pub"

Granting access localhost -> m2.bsc.es

me@localhost:™$ scp ~/.ssh/id_rsa.pub user_m2@m2.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./
—me_localhost.pub"

me@localhost:”$ ssh user_ml@ml.bsc.es

user_ml@ml.bsc.es:™> ssh-keygen -t id_rsa

user_ml@ml.bsc.es:™> exit

Granting access ml.bsc.es -> localhost

me@localhost:~$ scp user_mi@ml.bsc.es:”/.ssh/id_rsa.pub ~/userml_ml.pub
me@localhost:~$ cat ~/userml_ml.pub >> ~/.ssh/authorized_keys

Granting access ml.bsc.es -> m2.bsc.es

me@localhost:”™$ scp “/userml_ml.pub user_m2@m2.bsc.es:”/userml_ml.pub
me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./userml_ml.pub >> ~/.ssh/authorized_keys; rm ./
—userml_ml.pub"

me@localhost:~$ rm ~/userml_ml.pub

me@localhost:™$ ssh user_m2@m2.bsc.es

user_m2@m2.bsc.es:”> ssh-keygen -t id_rsa

user_m20@m2.bsc.es: "> exit

Granting access m2.bsc.es -> localhost

me@localhost:~$ scp user_m2@ml.bsc.es:”/.ssh/id_rsa.pub ~/userm2_m2.pub
me@localhost:~$ cat ~/userm2_m2.pub >> ~/.ssh/authorized_keys

Granting access m2.bsc.es -> ml.bsc.es

me@localhost:~$ scp ~/userm2_m2.pub user_ml@ml.bsc.es:”/userm2_m2.pub
me@localhost:~$ ssh user_mil@ml.bsc.es "cat ./userm2_m2.pub >> ~/.ssh/authorized_keys; rm ./
—userm2_m2.pub"

me@localhost:™$ rm ~/userm2_m2.pub

me@localhost

~ 7

user_m1@m1l.bsc.es user_m2@m2.bsc.es

Figure 5: Cluster example

3.5. Additional Configuration 43

COMPSs Documentation, 3.1

3.5.2 Configure the COMPSs Cloud Connectors

This section provides information about the additional configuration needed for some Cloud Connectors.

3.5.2.1 OCCI (Open Cloud Computing Interface) connector

In order to execute a COMPSs application using cloud resources, the rOCCI (Ruby OCCI) connector® has to be
configured properly. The connector uses the rOCCI CLI client (upper versions from 4.2.5) which has to be installed
in the node where the COMPSs main application runs. The client can be installed following the instructions detailed
at http://appdb.egi.eu/store/software /rocci.cli

3.6 Configuration Files

The COMPSs runtime has two configuration files: resources.xml and project.xml . These files contain infor-
mation about the execution environment and are completely independent from the application.

For each execution users can load the default configuration files or specify their custom configurations by us-
ing, respectively, the --resources=<absolute_path_to_resources.xml> and the --project=<absolute_path_-
to_project.xml> in the runcompss command. The default files are located in the /opt/COMPSs/Runtime/
configuration/xml/ path.

Next sections describe in detail the resources.xml and the project.xml files, explaining the available options.

3.6.1 Resources file

The resources file provides information about all the available resources that can be used for an execution.
This file should normally be managed by the system administrators. Its full definition schema can be found at
/opt/COMPSs/Runtime/configuration/xml/resources/resource_schema.xsd.

For the sake of clarity, users can also check the SVG schema located at /opt/COMPSs/Runtime/configuration/
xml/resources/resource_schema.svg.

This file contains one entry per available resource defining its name and its capabilities. Administrators can define
several resource capabilities (see example in the next listing) but we would like to underline the importance of
ComputingUnits. This capability represents the number of available cores in the described resource and it is
used to schedule the correct number of tasks. Thus, it becomes essential to define it accordingly to the number of
cores in the physical resource.

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/resources/default_resources.xml
<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Processor Name="P2">
<ComputingUnits>2</ComputingUnits>
</Processor>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>

(continues on next page)

1 https://appdb.egi.eu/store/software/rocci.cli

44 Chapter 3. Installation and Administration

http://appdb.egi.eu/store/software/rocci.cli
https://appdb.egi.eu/store/software/rocci.cli

COMPSs Documentation, 3.1

(continued from previous page)

<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
<Memory>
<8ize>16</Size>
</Memory>
<Storage>
<Size>200.0</Size>
</Storage>
<OperatingSystem>
<Type>Linux</Type>
<Distribution>0penSUSE</Distribution>
</0OperatingSystem>
<Software>
<Application>Java</Application>
<Application>Python</Application>
</Software>
</ComputeNode>
</ResourcesList>

3.6.2 Project file

The project file provides information about the resources used in a specific execution. Consequently, the resources
that appear in this file are a subset of the resources described in the resources.xml file. This file, that contains
one entry per worker, is usually edited by the users and changes from execution to execution. Its full definition
schema can be found at /opt/COMPSs/Runtime/configuration/xml/projects/project_schema.xsd.

For the sake of clarity, users can also check the SVG schema located at /opt/COMPSs/Runtime/configuration/
xml/projects/project_schema.xsd.

We emphasize the importance of correctly defining the following entries:

installDir Indicates the path of the COMPSs installation inside the resource (not necessarily the same than
in the local machine).

User Indicates the username used to connect via ssh to the resource. This user must have passwordless access
to the resource (see Configure SSH passwordless Section). If left empty COMPSs will automatically try to
access the resource with the same username as the one that lauches the COMPSs main application.

LimitOfTasks The maximum number of tasks that can be simultaneously scheduled to a resource. Considering
that a task can use more than one core of a node, this value must be lower or equal to the number of available
cores in the resource.

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/projects/default_project.xml
<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<!-- Description for Master Node -->

<MasterNode></MasterNode>

<!--Description for a physical node-->
<ComputeNode Name="localhost">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
<Application>
<AppDir>/home/user/apps/</AppDir>

(continues on next page)

3.6. Configuration Files 45

COMPSs Documentation, 3.1

(continued from previous page)

<LibraryPath>/usr/lib/</LibraryPath>
<Classpath>/home/user/apps/jar/example. jar</Classpath>
<Pythonpath>/home/user/apps/</Pythonpath>
</Application>
<Limit0fTasks>4</Limit0fTasks>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
<User>user</User>
</Adaptor>
</Adaptors>
</ComputeNode>
</Project>

3.6.3 Configuration examples

In the next subsections we provide specific information about the services, shared disks, cluster and cloud config-
urations and several project.xml and resources.xml examples.

3.6.3.1 Parallel execution on one single process configuration

The most basic execution that COMPSs supports is using no remote workers and running all the tasks internally
within the same process that hosts the application execution. To enable the parallel execution of the application,
the user needs to set up the runtime and provide a description of the resources available on the node. For that
purpose, the user describes within the <MasterNode> tag of the project.xml file the resources in the same way it
describes other nodes’ resources on the using the resources.xml file. Since there is no inter-process communication,
adaptors description is not allowed. In the following example, the master will manage the execution of tasks on
the MainProcessor CPU of the local node - a quad-core amd64 processor at 3.0GHz - and use up to 16 GB of
RAM memory and 200 GB of storage.

<?zml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode>
<Processor Name="MainProcessor">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Memory>
<Size>16</Size>
</Memory>
<Storage>
<Size>200.0</Size>
</Storage>
</MasterNode>
</Project>

If no other nodes are available, the list of resources on the resources.xml file is empty as shown in the following
file sample. Otherwise, the user can define other nodes besides the master node as described in the following

46 Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

section, and the runtime system will orchestrate the task execution on both the local process and on the configured
remote nodes.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
</ResourcesList>

3.6.3.2 Cluster and grid configuration (static resources)

In order to use external resources to execute the applications, the following steps have to be followed:

1. Install the COMPSs Worker package (or the full COMPSs Framework package) on all the new resources.

2. Set SSH passwordless access to the rest of the remote resources.

3. Create the WorkingDir directory in the resource (remember this path because it is needed for the project.
xml configuration).

4. Manually deploy the application on each node.

The resources.xml and the project.xml files must be configured accordingly. Here we provide examples about
configuration files for Grid and Cluster environments.

<?zxml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="hostnamel.domain.es">
<Processor Name="MainProcessor">
<ComputingUnits>4</ComputingUnits>
</Processor>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
</Adaptor>
<Adaptor Name="es.bsc.compss.gat.master.GATAdaptor">
<SubmissionSystem>
<Batch>
<Queue>sequential</Queue>
</Batch>
<Interactive/>
</SubmissionSystem>
<BrokerAdaptor>sshtrilead</BrokerAdaptor>
</Adaptor>
</Adaptors>
</ComputeNode>

<ComputeNode Name="hostname2.domain.es">

</ComputeNode>
</ResourcesList>

=n

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<MasterNode/>

<ComputeNode Name="hostnamel.domain.es">

(continues on next page)

3.6. Configuration Files 47

COMPSs Documentation, 3.1

(continued from previous page)

<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/COMPSsWorkerl/</WorkingDir>
<User>user</User>
<Limit0fTasks>2</Limit0fTasks>
</ComputeNode>
<ComputeNode Name="hostname2.domain.es">

</ComputeNode>
</Project>

3.6.3.3 Shared Disks configuration example

Configuring shared disks might reduce the amount of data transfers improving the application performance. To
configure a shared disk the users must:

1. Define the shared disk and its capabilities
2. Add the shared disk and its mountpoint to each worker
3. Add the shared disk and its mountpoint to the master node

Next example illustrates steps 1 and 2. The <SharedDisk> tag adds a new shared disk named sharedDiskO and
the <AttachedDisk> tag adds the mountpoint of a named shared disk to a specific worker.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<SharedDisk Name="sharedDiskO0">
<Storage>
<Size>100.0</Size>
<Type>Persistent</Type>
</Storage>
</SharedDisk>

<ComputeNode Name="localhost">

<SharedDisks>
<AttachedDisk Name="sharedDiskO">
<MountPoint>/tmp/SharedDisk/</MountPoint>
</AttachedDisk>
</SharedDisks>
</ComputeNode>
</ResourcesList>

On the other side, to add the shared disk to the master node, the users must edit the project.xml file. Next
example shows how to attach the previous sharedDiskO to the master node:

<?zxml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode>
<SharedDisks>
<AttachedDisk Name="sharedDiskO">
<MountPoint>/home/sharedDisk/</MountPoint>
</AttachedDisk>
</SharedDisks>
</MasterNode>

<ComputeNode Name="localhost">

(continues on next page)

48 Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

(continued from previous page)

</ComputeNode>
</Project>

Notice that the resources.xml file can have multiple SharedDisk definitions and that the SharedDisks tag (either
in the resources.xml or in the project.xml files) can have multiple AttachedDisk childrens to mount several
shared disks on the same worker or master.

3.6.3.4 Cloud configuration (dynamic resources)

In order to use cloud resources to execute the applications, the following steps have to be followed:

1. Prepare cloud images with the COMPSs Worker package or the full COMPSs Framework package installed.
2. The application will be deployed automatically during execution but the users need to set up the configuration
files to specify the application files that must be deployed.

The COMPSs runtime communicates with a cloud manager by means of connectors. Each connector implements
the interaction of the runtime with a given provider’s API, supporting four basic operations: ask for the price
of a certain VM in the provider, get the time needed to create a VM, create a new VM and terminate a VM.
This design allows connectors to abstract the runtime from the particular API of each provider and facilitates the
addition of new connectors for other providers.

The resources.xml file must contain one or more <CloudProvider> tags that include the information about a
particular provider, associated to a given connector. The tag must have an attribute Name to uniquely identify
the provider. Next example summarizes the information to be specified by the user inside this tag.

<?zml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<CloudProvider Name="PROVIDER_NAME">
<Endpoint>
<Server>https://PROVIDER_URL</Server>
<ConnectorJar>CONNECTOR_JAR</ConnectorJar>
<ConnectorClass>CONNECTOR_CLASS</ConnectorClass>

</Endpoint>
<Images>
<Image Name="Imagel">
<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
<OperatingSystem>
<Type>Linux</Type>
</0OperatingSystem>
<Software>
<Application>Java</Application>
</Software>
<Price>
<TimeUnit>100</TimeUnit>
<PricePerUnit>36.0</PricePerUnit>
</Price>
</Image>

(continues on next page)

3.6. Configuration Files 49

COMPSs Documentation, 3.1

(continued from previous page)

<Image Name="Image2">

<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
</Image>
</Images>
<InstanceTypes>

<InstanceType Name="Instancel">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Processor Name="P2">
<ComputingUnits>4</ComputingUnits>
</Processor>
<Memory>
<Size>1000.0</Size>
</Memory>
<Storage>
<Size>2000.0</Size>
</Storage>
</InstanceType>
<InstanceType Name="Instance2">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
</Processor>
</InstanceType>
</InstanceTypes>
</CloudProvider>
</ResourcesList>

The project.xml complements the information about a provider listed in the resources.xml file. This file can
contain a <Cloud> tag where to specify a list of providers, each with a <CloudProvider> tag, whose name attribute
must match one of the providers in the resources.xml file. Thus, the project.xml file must contain a subset
of the providers specified in the resources.xml file. Next example summarizes the information to be specified by
the user inside this <Cloud> tag.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<Cloud>
<InitialVMs>1</InitialVMs>
<MinimumVMs>1</MinimumVMs>
<MaximumVMs>4</MaximumVMs>
<CloudProvider Name="PROVIDER_NAME">
<Limit0fVMs>4</Limit0fVMs>
<Properties>

(continues on next page)

50 Chapter 3. Installation and Administration

COMPSs Documentation, 3.1

(continued from previous page)

<Property Context="C1">
<Name>P1</Name>
<Value>Vi</Value>

</Property>

<Property>
<Name>P2</Name>
<Value>V2</Value>

</Property>

</Properties>

<Images>
<Image Name="Imagel">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
<User>user</User>
<Application>
<Pythonpath>/home/user/apps/</Pythonpath>
</Application>
<Limit0fTasks>2</Limit0fTasks>
<Package>
<Source>/home/user/apps/</Source>
<Target>/tmp/Worker/</Target>
<IncludedSoftware>
<Application>Java</Application>
<Application>Python</Application>
</IncludedSoftware>
</Package>
<Package>
<Source>/home/user/apps/</Source>
<Target>/tmp/Worker/</Target>
</Package>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
</Image>
<Image Name="Image2">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
</Image>
</Images>
<InstanceTypes>
<InstanceType Name="Instancel"/>
<InstanceType Name="Instance2"/>
</InstanceTypes>
</CloudProvider>

<CloudProvider Name="PROVIDER_NAME2">

(continues on next page)

3.6.

Configuration Files 51

COMPSs Documentation, 3.1

(continued from previous page)

</CloudProvider>
</Cloud>
</Project>

For any connector the Runtime is capable to handle the next list of properties:

Table 2: Connector supported properties in the project.xml file

Name Description

provider-user Username to login in the provider
provider-user-credential | Credential to login in the provider
time-slot Time slot

estimated-creation-time | Estimated VM creation time
max-vm-creation-time Maximum VM creation time

Additionally, for any connector based on SSH, the Runtime automatically handles the next list of properties:

Table 3: Properties supported by any SSH based connector in the
project.xml file

Name Description
vm-user User to login in the VM
vm-password Password to login in the VM

vm-keypair-name Name of the Keypair to login in the VM
vm-keypair-location | Location (in the master) of the Keypair to login in the VM

Finally, the next sections provide a more accurate description of each of the currently available connector and its
specific properties.

Cloud connectors: rOCCI

The connector uses the rOCCI binary client! (version newer or equal than 4.2.5) which has to be installed in the
node where the COMPSs main application is executed.

This connector needs additional files providing details about the resource templates available on each provider. This
file is located under <COMPSs_INSTALL_DIR>/configuration/xml/templates path. Additionally, the user must
define the virtual images flavors and instance types offered by each provider; thus, when the runtime decides the
creation of a VM, the connector selects the appropriate image and resource template according to the requirements
(in terms of CPU, memory, disk, etc) by invoking the rOCCI client through Mixins (heritable classes that override
and extend the base templates).

Table 4 contains the rOCCI specific properties that must be defined under the Provider tag in the project.xml
file and Table 5 contains the specific properties that must be defined under the Instance tag.

1 https://appdb.egi.eu/store/software/rocci.cli

52 Chapter 3. Installation and Administration

https://appdb.egi.eu/store/software/rocci.cli

COMPSs Documentation,

3.1

Table 4: rOCCI extensions in the project.xml file

Name Description

auth Authentication method, x509 only supported
user-cred Path of the VOMS proxy

ca-path Path to CA certificates directory

ca-file Specific CA filename

owner Optional. Used by the PMES Job-Manager

jobname Optional. Used by the PMES Job-Manager

timeout Maximum command time

username Username to connect to the back-end cloud provider
password Password to connect to the back-end cloud provider
voms Enable VOMS authentication

media-type Media type

resource Resource type

attributes Extra resource attributes for the back-end cloud provider
context Extra context for the back-end cloud provider

action Extra actions for the back-end cloud provider

mixin Mixin definition

link Link

trigger-action | Adds a trigger

log-to Redirect command logs

skip-ca-check | Skips CA checks

filter Filters command output

dump-model | Dumps the internal model

debug Enables the debug mode on the connector commands
verbose Enables the verbose mode on the connector commands

Table 5: Configuration of the <resources>.xml templates file

Instance | Multiple entries of resource templates.

Type Name of the resource template. It has to be the same name than in the previous files
CPU Number of cores

Memory | Size in GB of the available RAM

Disk Size in GB of the storage

Price Cost per hour of the instance

Cloud connectors: JClouds

The JClouds connector is based on the JClouds API version 1.9.1. Table Table 6 shows the extra available options

under the Properties tag that are used by this connector.

Table 6: JClouds extensions in the <project>.xml file

Instance | Description

provider | Back-end provider to use with JClouds (i.e. aws-ec2)

3.6. Configuration Files

53

COMPSs Documentation, 3.1

Cloud connectors: Docker

This connector uses a Java API client from https://github.com/docker-java/docker-java, version 3.0.3. It has not
additional options. Make sure that the image/s you want to load are pulled before running COMPSs with docker
pull IMAGE. Otherwise, the connectorn will throw an exception.

Cloud connectors: Mesos

The connector uses the v0 Java API for Mesos which has to be installed in the node where the COMPSs main
application is executed. This connector creates a Mesos framework and it uses Docker images to deploy workers,
each one with an own IP address.

By default it does not use authentication and the timeout timers are set to 3 minutes (180.000 milliseconds). The
list of optional properties available from connector is shown in Table 7.

Table 7: Mesos connector options in the <project>.xml file

Instance
mesos-framework-name
mesos-woker-name

Description
Framework name to show in Mesos.
Worker names to show in Mesos.

mesos-framework-hostname

Framework hostname to show in Mesos.

mesos-checkpoint

Checkpoint for the framework.

mesos-authenticate

Uses authentication? (true/false)

mesos-principal

Principal for authentication.

mesos-secret

Secret for authentication.

mesos-framework-register-timeout

Timeout to wait for Framework to register.

mesos-framework-register-timeout-units

Time units to wait for register.

mesos-worker-wait-timeout

Timeout to wait for worker to be created.

mesos-worker-wait-timeout-units

Time units for waiting creation.

mesos-worker-kill-timeout

Number of units to wait for killing a worker.

mesos-worker-kill-timeout-units

Time units to wait for killing.

mesos-docker-command

Command to use at start for each worker.

mesos-containerizer

Containers to use: (MESOS/DOCKER)

mesos-docker-network-type

Network type to use: (BRIDGE/HOST/USER)

mesos-docker-network-name

Network name to use for workers.

mesos-docker-mount-volume

Mount volume on workers? (true/false)

mesos-docker-volume-host-path

Host path for mounting volume.

mesos-docker-volume-container-path

Container path to mount volume.

TimeUnit avialable values: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, SECONDS.

3.6.3.5 Services configuration

To allow COMPSs applications to use WebServices as tasks, the resources.xml can include a special type of
resource called Service. For each WebService it is necessary to specify its wsdl, its name, its namespace and its
port.

<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">

</ComputeNode>
<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobj7wsdl">

<Name>HmmerObjects</Name>
<Namespace>http://hmmerobj.worker</Namespace>

(continues on next page)

54 Chapter 3. Installation and Administration

https://github.com/docker-java/docker-java

COMPSs Documentation, 3.1

(continued from previous page)

<Port>HmmerObjectsPort</Port>
</Service>
</ResourcesList>

When configuring the project.xml file it is necessary to include the service as a worker by adding an special entry
indicating only the name and the limit of tasks as shown in the following example:

<?zxml wversion="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<MasterNode/>

<ComputeNode Name="localhost">

</ComputeNode>

<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobjrwsdl">
<Limit0fTasks>2</Limit0fTasks>
</Service>
</Project>

3.6.3.6 HTTP configuration

To enable execution of HT'TP tasks, Hittp resources must be included in the resources file as shown in the
following example. Please note that the BaseUrl attribute is the unique identifier of each Http resource. However,
it’s possible to assign a single resource to multiple services and in the same way one service can be executed on
various resources.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">

</ComputeNode>

<Http BaseUrl="http://remotehost:1992/test/">
<ServiceName>service_1</ServiceName>
<ServiceName>service_2</ServiceName>
</Http>

<Http BaseUrl="http://remotehost:2020/print/">
<ServiceName>service_2</ServiceName>
<ServiceName>service_3</ServiceName>
</Http>

</ResourcesList>

Configuration of the project file must have the Http worker(s) as well, in order to let the runtime know limit of
tasks to be executed in parallel on resources.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<MasterNode/>

<ComputeNode Name="localhost">

</ComputeNode>

<Http BaseUrl="http://remotehost:1992/test/">

(continues on next page)

3.6. Configuration Files 55

COMPSs Documentation, 3.1

(continued from previous page)

<LimitO0fTasks>1</Limit0fTasks>
</Http>

<Http BaseUrl="http://remotehost:2020/print/">
<Limit0fTasks>1</Limit0fTasks>
</Http>

</Project>

56 Chapter 3. Installation and Administration

Chapter 4

Application development

This section is intended to walk you through the development of COMPSs applications.

4.1 Java

This section illustrates the steps to develop a Java COMPSs application, to compile and to execute it. The Simple
application will be used as reference code. The user is required to select a set of methods, invoked in the sequential
application, that will be run as remote tasks on the available resources.

4.1.1 Programming Model

This section shows how the COMPSs programming model is used to develop a Java task-based parallel application
for distributed computing. First, We introduce the structure of a COMPSs Java application and with a simple
example. Then, we will provide a complete guide about how to define the application tasks. Finally, we will show
special API calls and other optimization hints.

4.1.1.1 Application Overview

A COMPSs application is composed of three parts:

e Main application code: the code that is executed sequentially and contains the calls to the user-selected
methods that will be executed by the COMPSs runtime as asynchronous parallel tasks.

e Remote methods code: the implementation of the tasks.

e Task definition interface: It is a Java annotated interface which declares the methods to be run as remote
tasks along with metadata information needed by the runtime to properly schedule the tasks.

The main application file name has to be the same of the main class and starts with capital letter, in this
case it is Simple.java. The Java annotated interface filename is application name + Itf.java, in this case it is
Simpleltf.java. And the code that implements the remote tasks is defined in the application name + Impl.java
file, in this case it is SimpleImpl.java.

All code examples are in the /home/compss/tutorial_apps/java/ folder of the development environment.

57

COMPSs Documentation, 3.1

Main application code

In COMPSs, the user’s application code is kept unchanged, no API calls need to be included in the main application

code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the creation of
remote tasks also taking care of the access to files where required. Let’s consider the Simple application example

that takes an integer as input parameter and increases it by one unit.

The main application code of Simple application is shown in the following code block. It is executed sequentially
until the call to the increment() method. COMPSs, as mentioned above, replaces the call to this method with

the generation of a remote task that will be executed on an available node.

Code 7: Simple in Java (Simple.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import simple.SimpleImpl;

public class Simple {

public static void main(String[] args) {

X
}

String counterName = '"counter";
int initialValue = args[0];

F A e L e L LT //
// Creation of the file which will contain the counter variable //
2 //
try {

FileOutputStream fos = new FileOutputStream(counterName) ;
fos.write(initialValue) ;
System.out.println("Initial counter value is " + initialValue);
fos.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

F R e e L L E L LT //
// Ezecution of the program //
/e //
SimpleImpl.increment (counterName) ;

F A e e T //
// Reading from an object stored in a File //
/e //
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());
fis.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

58

Chapter 4. Application development

COMPSs Documentation, 3.1

Remote methods code

The following code contains the implementation of the remote method of the Simple application that will be
executed remotely by COMPSs.

Code 8: Simple Implementation (Simplelmpl.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;

import java.io.IOException;
import java.io.FileNotFoundException;

public class SimpleImpl {
public static void increment(String counterFile) {
try{
FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close();
FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count) ;
fos.close();
}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();
}catch(IOException ioe){
ioe.printStackTrace();
}
}
}

Task definition interface

This Java interface is used to declare the methods to be executed remotely along with Java annotations that specify
the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String type are
supported) and its directions (IN, OUT, INOUT, COMMUTATIVE or CONCURRENT).

2. The Java class that contains the code of the method.

3. The constraints that a given resource must fulfill to execute the method, such as the number of processors
or main memory size.

The task description interface of the Simple app example is shown in the following figure. It includes the description
of the Increment() method metadata. The method interface contains a single input parameter, a string containing
a path to the file counterFile. In this example there are constraints on the minimum number of processors and
minimum memory size needed to run the method.

Code 9: Interface of the Simple application (Simpleltf.java)

package simple;

import es.bsc.compss.types.annotations.Constraints;

import es.bsc.compss.types.annotations.task.Method;

import es.bsc.compss.types.annotations.Parameter;

import es.bsc.compss.types.annotations.parameter.Direction;
import es.bsc.compss.types.annotations.parameter.Type;

public interface SimpleItf {

(continues on next page)

4.1. Java 59

COMPSs Documentation, 3.1

(continued from previous page)

@Constraints(computingUnits = "1", memorySize = "0.3")
@Method(declaringClass = "simple.SimpleImpl")
void increment(
O@Parameter (type = Type.FILE, direction = Direction.INOUT)
String file
)3

The following sections show a detailed guide of how to implement complex applications.

4.1.1.2 Task definition reference guide

The task definition interface is a Java annotated interface where developers define tasks as annotated methods in
the interfaces. Annotations can be of three different types:

1.

Task-definition annotations are method annotations to indicate which type of task is a method declared in
the interface.

. The Parameter annotation provides metadata about the task parameters, such as data type, direction and

other property for runtime optimization.

The Constraints annotation describes the minimum capabilities that a given resource must fulfill to execute
the task, such as the number of processors or main memory size.

The Prolog/Epilog annotations are definitions of binaries to be run before/after the task execution.
Scheduler hint annotation provides information about how to deal with tasks of this type at scheduling and
execution.

A complete and detailed explanation of the usage of the metadata includes:

Task-definition Annotations

For each declared methods, developers has to define a task type. The following list enumerates the possible task
types:
e @Method: Defines the Java method as a task

— declaringClass (Mandatory) String specifying the class that implements the Java method.

— targetDirection This field specifies the direction of the target object of an object method. It can be
defined as: INOUT” (default value) if the method modifies the target object, “CONCURRENT” if this
object modification can be done concurrently, or “IN” if the method does not modify the target object.
0.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

— onFailure Expected behaviour if the task fails. OnFuailure. RETRY (default value) makes the task be
executed again, OnFailure. CANCEL SUCCESSORS ignores the failure and cancels the succesor tasks,
OnFailure. FAIL stops the whole application in a save mode once a task fails or OnFailure. IGNORE
ignores the failure and continues with normal runtime execution.

e @Binary: Defines the Java method as a binary invokation

— binary (Mandatory) String defining the full path of the binary that must be executed.

— workingDir Full path of the binary working directory inside the COMPSs Worker.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @QMPI: Defines the Java method as a MPI invokation

— mpiRunner (Mandatory) String defining the mpi runner command.

— binary (Mandatory) String defining the full path of the binary that must be executed.

— processes String defining the number of MPI processes spawn in the task execution. This can be
combined with the constraints annotation to create define a MPI+OpenMP task. (Default is 1)

60

Chapter 4. Application development

COMPSs Documentation, 3.1

— scaleByCU It indicates that the defined processes will be scaled by the defined computingUnits in
the constraints. So, the total MPI processes will be processes multiplied by computingUnits. This
functionality is used to groups MPI processes per node. Number of groups will be set in processes and
the number of processes per node will be indicated by computingUnits

— workingDir Full path of the binary working directory inside the COMPSs Worker.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @OmpSs: Defines the Java method as a OmpSs invokation

— binary (Mandatory) String defining the full path of the binary that must be executed.

— workingDir Full path of the binary working directory inside the COMPSs Worker.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @Http: It specifies the HTTP task properties.

— serviceName Mandatory. Name of the HI'TP Service that included at least one HT'TP resource in
the resources file.

— resource Mandatory. URL extension to be concatenated with HT'TP resource’s base URL.

— request Mandatory. Type of the HTTP request (GET, POST, etc.).

— payload Payload string of POST requests if any. Payload strings can contain any kind of a COMPSs
Parameter as long as it is defined between double curly brackets as ‘{{parameter name}}’. File pa-
rameters can also be used simply by including only the file parameter name.

— payloadType Payload type of POST requests (e.g: ‘application/json’).

— produces In case of JSON responses, produces string can be used as a template to define 2 things; the
first one is where the return value(s) is (are) stored in the retrieved JSON string. Returns are meant to
be defined as ‘{{return_0}}’,’{{return_1}}’, etc. And the second one is for additional parameters to
be used ‘updates’ string. The user assign a value from the JSON response to a parameter and use that
param to update an INOUT dictionary.

— updates (PyCOMPSs only) In case of INOUT dictionaries, the user can update the INOUT dict with
a value extracted from the JSON response.

For task which are not methods, a representative method has to be defined in an specific class depending on the
task type (binary.BINARY in the case of binary tasks, mpi.MPI for mpi tasks, ...). This is required just for
compilation and to enable the invocation of the task from the main code, the runtime will substitute this code by
the real execution of the defined task. An example of this representative method can be found in Code 10

Code 10: Representative method for an MPI task

package mpi;

public class MPI {
public static int mpiExecution(int i, String outFile) {
// Nothing to do
return 0

}

Parameter-level annotations

For each parameter of task (method declared in the interface), the user must include a @Parameter annotation.
The properties

e Direction: Describes how a task uses the parameter (Default is IN).

— Direction.IN: Task only reads the data.

— Direction.INOUT: Task reads and modifies

— Direction.OUT: Task completely modify the data, or previous content or not modified data is not
important.

— Direction. COMMUTATIVE: An INOUT usage of the data which can be re-ordered with other
executions of the defined task.

— Direction. CONCURRENT: The task allow concurrent modifications of this data. It requires a
storage backend that manages concurrent modifications.

4.1. Java 61

COMPSs Documentation, 3.1

e Type: Describes the data type of the task parameter. By default, the runtime infers the type according to

the Java datatype. However, it is mandatory to define it for files, directories and Streams.
COMPSs supports the following types for task parameters:

— Basic types: To indicate a parameter is a Java primitive type use the follwing types: Type. BOOLEAN,
Type.CHAR, Type.BYTE, Type.SHORT, Type.INT, Type. LONG, Type. FLOAT, Type. DOUBLE. They
can only have IN direction, since primitive types in Java are always passed by value.

— String: To indicate a parameter is a Java String use Type.STRING. It can only have IN direction,
since Java Strings are immutable.

— File: The real Java type associated with a file parameter is a String that contains the path to the file.
However, if the user specifies a parameter as Type. FILE, COMPSs will treat it as such. It can have any
direction (IN, OUT, INOUT, CONMMUTATIVE or CONCURRENT).

— Directory: The real Java type associated with a directory parameter is a String that contains the path
to the directory. However, if the user specifies a parameter as Type. DIRECTORY, COMPSs will treat
it as such. It can have any direction (IN, OUT, INOUT, CONMMUTATIVE or CONCURRENT).

— Object: An object parameter is defined with Type.Object. It can have any direction (IN, INOUT,
COMMUTATIVE or CONCURRENT).

— Streams: A Task parameters can be defined as stream with Type.STREAM. It can have direction IN,
if the task pull data from the stream, or OUT if the task pushes data to the stream.

Return type: Any object or a generic class object. In this case the direction is always OUT. Basic types are
also supported as return types. However, we do not recommend to use them because they cause an implicit
synchronization

StdIOStream: For non-native tasks (binaries, MPI, and OmpSs) COMPSs supports the auto-
matic redirection of the Linux streams by specifying StdIOStream.STDIN, StdIOStream.STDOUT or
StdIOStream.STDERR. Notice that any parameter annotated with the stream annotation must be of type
Type. FILE, and with direction Direction.IN for StdIOStream.STDIN or Direction.OUT/ Direction.INOUT
for StdIOStream.STDOUT and StdIOStream.STDERR.

Prefix: For non-native tasks (binaries, MPI, and OmpSs) COMPSs allows to prepend a constant String to
the parameter value to use the Linux joint-prefixes as parameters of the binary execution.

Weight: Provides a hint of the size of this parameter compared to a default one. For instance, if a parameters
is 3 times larger than the others, set the weigh property of this paramenter to 3.0. (Default is 1.0).
keepRename: Runtime rename files to avoid some data dependencies. It is transparent to the final user
because we rename back the filename when invoking the task at worker. This management creates an
overhead, if developers know that the task is not name nor extension sensitive (i.e can work with rename),
they can set this property to true to reduce the overhead.

Constraints annotations

e @Constraints: The user can specify the capabilities that a resource must have in order to run a method.

For example, in a cloud execution the COMPSs runtime creates a VM that fulfils the specified requirements
in order to perform the execution. A full description of the supported constraints can be found in Table 14.

Prolog & Epilog annotations

e @Prolog: Defines a binary to be run right before the task execution.

— binary: the binary to be executed.

— params: describe the command line arguments of the binary.

— failByExitValue: is used to indicate the behaviour when the prolog or epilog returns an exit value
different than zero. Users can set the ~failByExitValue™ to True, if they want to consider the exit
value as a task failure.

e @Epilog: Defines a binary to be run right after the task execution finishes.

— binary , params, failByExitValue with the same behaviours as Prolog.

62

Chapter 4. Application development

COMPSs Documentation, 3.1

Scheduler annotations

e @SchedulerHints: It specifies hints for the scheduler about how to treat the task.
— isReplicated “true” if the method must be executed in all the worker nodes when invoked from the
main application (it is a String not a Java boolean).
— isDistributed “true” if the method must be scheduled in a forced round robin among the available
resources (it is a String not a Java boolean).

4.1.1.3 Alternative method implementations

Since version 1.2, the COMPSs programming model allows developers to define sets of alternative implementations
of the same method in the Java annotated interface. Code 11 depicts an example where the developer sorts
an integer array using two different methods: merge sort and quick sort that are respectively hosted in the
packagepath. Mergesort and packagepath. Quicksort classes.

Code 11: Alternative sorting method definition example

@Method (declaringClass = "packagepath.Mergesort")

@Method (declaringClass = "packagepath.Quicksort")

void sort(
OParameter (type = Type.0OBJECT, direction = Direction.INOUT)
int[] array

)

As depicted in the example, the name and parameters of all the implementations must coincide; the only difference
is the class where the method is implemented. This is reflected in the attribute declaringClass of the @Method
annotation. Instead of stating that the method is implemented in a single class, the programmer can define several
instances of the @Method annotation with different declaring classes.

As independent remote methods, the sets of equivalent methods might have common restrictions to be fulfilled
by the resource hosting the execution. Or even, each implementation can have specific constraints. Through
the @Constraints annotation, developers can specify the common constraints for a whole set of methods. In the
following example (Code 12) only one core is required to run the method of both sorting algorithms.

Code 12: Alternative sorting method definition with constraint
example

OConstraints(computingUnits = "1")

@Method(declaringClass = '"packagepath.Mergesort")

@Method (declaringClass = "packagepath.Quicksort")

void sort(
QParameter (type = Type.OBJECT, direction = Direction.INOUT)
int[] array

)

However, these sorting algorithms have different memory consumption, thus each algorithm might require a specific
amount of memory and that should be stated in the implementation constraints. For this purpose, the developer
can add a @Constraints annotation inside each @Method annotation containing the specific constraints for that
implementation. Since the Mergesort has a higher memory consumption than the quicksort, the Code 13 sets a
requirement of 1 core and 2GB of memory for the mergesort implementation and 1 core and 500MB of memory
for the quicksort.

Code 13: Alternative sorting method definition with specific con-
straints example

OConstraints(computingUnits = "1")
@Method(declaringClass = "packagepath.Mergesort", constraints = Q@Constraints(memorySize = "2.0
t_)ll))

(continues on next page)

4.1. Java 63

COMPSs Documentation, 3.1

(continued from previous page)

@Method (declaringClass = "packagepath.Quicksort", constraints = Q@Constraints(memorySize = "0.5
%ll))
void sort(

OParameter(type = Type.OBJECT, direction = Direction.INOUT)

int[] array

)

4.1.1.4 Java API calls
COMPSs also provides a explicit synchronization call, namely barrier, which can be used through the COMPSs
Java, API. The use of barrier forces to wait for all tasks that have been submitted before the barrier is called.

When all tasks submitted before the barrier have finished, the execution continues (Code 14).

Code 14: COMPSs.barrier() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {

// Setup counterNamel and counterName2 files
// Ezxecute task increment 1
SimpleImpl.increment (counterNamel) ;
// API Call to watit for all tasks
COMPSs.barrier();
// Execute task increment 2
SimpleImpl.increment(counterName2);

When an object is used in a task, COMPSs runtime store the references of these object in the runtime data
structures and generate replicas and versions in remote workers. COMPSs is automatically removing these replicas
for obsolete versions. However, the reference of the last version of these objects could be stored in the runtime
data-structures preventing the garbage collector to remove it when there are no references in the main code. To
avoid this situation, developers can indicate the runtime that an object is not going to use any more by calling the
deregisterObject API call. Code 15 shows a usage example of this API call.

Code 15: COMPSs.deregisterObject() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {

final int ITERATIONS = 10;

for (int i = 0; i < ITERATIONS; ++i) {
Dummy d = new Dummy(d);
TaskImpl.task(d);
/*41lows garbage collector to delete the

object from memory when the task is finished */

COMPSs.deregisterObject ((Object) d);

To synchronize files, the getFile API call synchronizes a file, returning the last version of file with its original name.
Code 16 contains an example of its usage.

64 Chapter 4. Application development

COMPSs Documentation, 3.1

Code 16: COMPSs.getFile() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {
for (int i=0; i<1; i++) {
TaskImpl.task(FILE_NAME, i);
}
/*Watts until all tasks have finished and
synchronizes the file with its last version*/

COMPSs.getFile (FILE_NAME) ;

4.1.1.5 Managing Failures in Tasks
COMPSs provide mechanism to manage failures in tasks. Developers can specify two properties in the task
definition what the runtime should do when a task is blocked or failed.

The timeQut property indicates the runtime that a task of this type is considered failed when its duration is larger
than the value specified in the property (in seconds)

The onFailure property indicates what to do when a task of this type is failed. The possible values are:

e OnFaiure. RETRY (Default): The task is executed twice in the same worker and a different worker.

o OnFuailure. CANCEL SUCCESSORS: All successors of this task are canceled.

e OnFuailure. FAIL: The task failure produces a failure of the whole application.

e OnFailure. IGNORE: The task failure is ignored and the output parameters are set with empty values.

Usage examples of these properties are shown in Code 17

Code 17: Failure example

public interface FailuresItf{
@Method(declaringClass = "example.Example", timeQut = "3000", onFailure = OnFailure.IGNORE)
void task_example(@Parameter(type = Type.FILE, direction = Direction.0UT) String fileName);

4.1.1.6 Tasks Groups and COMPSs exceptions

COMPSs allows users to define task groups which can be combined with an special exception (COMPSsException)
that the user can use to achieve parallel distributed try/catch blocks; Code 18 shows an example of COMPSsEz-
ception raising. In this case, the group definition is blocking, and waits for all task groups to finish. If a task
of the group raises a COMPSsFEzception, it will be captured by the runtime which reacts to it by canceling the
running and pending tasks of the group and forwarding the COMPSsException to enable the execution except
clause. Consequenty, the COMPSsException must be combined with task groups.

Code 18: COMPSs Exception example

try (COMPSsGroup a = new COMPSsGroup("GroupA")) {
for (int j = 0; j < N; j++) {
Test.taskWithCOMPSsException(FILE_NAME) ;
}
} catch (COMPSsException e) {
Test.otherTask (FILE_NAME) ;

(continues on next page)

4.1. Java 65

COMPSs Documentation, 3.1

(continued from previous page)

It is possible to use a non-blocking task group for asynchronous behaviour (see Code 19). In this case, the
try/catch can be defined later in the code surrounding the COMPSs.barrierGroup, enabling to check exception
from the defined groups without retrieving data while other tasks are being executed.

Code 19: COMPSs Exception example

for (int i=0; i<10; i++){
try (COMPSsGroup a = new COMPSsGroup("Group" + i, false)) {
for (int j = 0; j < N; j++) {
Test.taskWithCOMPSsException (FILE_NAME) ;
}
} catch (Exception e) {
//This ts just for comptilation. Ezception mot catch here!
}
}
for (int i=0; i<10; i++){
// The group exception will be thrown from the barrier
try {
COMPSs.barrierGroup("FailedGroup2") ;
} catch (COMPSsException e) {
System.out.println("Exception caught in barrier!!");
Test.otherTask (FILE_NAME) ;

Attention: Method tasks are executed on top of Java threads, to perform a secure cancellation of a running
task in a thread when using the time timeout property and COMPSsExceptions, you have to use the *COMPSs-
Worker.cancellationPoint method to indicate the points where it is secure to cancel a task. When the task
code reaches this method, it will check if the current task must be cancelled and perform a save cancellation,
otherwise it will continue with this. An example about how to use the cancellation point is shown in Code 20

Code 20: COMPSs Exception example

import es.bsc.compss.worker.COMPSsWorker;
public class TasksImpl {

public static void cancellableTask(String fileName) throws Exception {
boolean condition = treu
while (condition) {
COMPSsWorker.cancellationPoint () ;
condition = computelteration(...);

66 Chapter 4. Application development

COMPSs Documentation, 3.1

4.1.2 Application Compilation

A COMPSs Java application needs to be packaged in a jar file containing the class files of the main code, of
the methods implementations and of the I#f annotation. This jar package can be generated using the commands
available in the Java SDK or creating your application as a Apache Maven project.

To integrate COMPSs in the maven compile process you just need to add the compss-api artifact as dependency
in the application project.

<dependencies>
<dependency>
<groupIld>es.bsc.compss</groupld>
<artifactId>compss-api</artifactId>
<version>${compss.version}</version>
</dependency>
</dependencies>

To build the jar in the maven case use the following command

$ mvn package

Next we provide a set of commands to compile the Java Simple application (detailed at Java Sample applications).

$ cd tutorial_apps/java/simple/src/main/java/simple/
$~/tutorial_apps/java/simple/src/main/java/simple$ javac *.java
$~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
$~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple/
$~/tutorial_apps/java/simple/src/main/java$ mv ./simple.jar ../../../jar/

In order to properly compile the code, the CLASSPATH variable has to contain the path of the compss-engine.jar
package. The default COMPSs installation automatically add this package to the CLASSPATH; please check
that your environment variable CLASSPATH contains the compss-engine.jar location by running the following
command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine.jar package in
your classpath. We recommend to automatically load the variable by editing the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

If you are using an IDE (such as Eclipse or NetBeans) we recommend you to add the compss-engine.jar file as an
external file to the project. The compss-engine.jar file is available at your current COMPSs installation under the
following path: /opt/COMPSs/Runtime/compss-engine.jar

Please notice that if you have performed a custom installation, the location of the package can be different.

4.1.3 Application Execution

A Java COMPSs application is executed through the runcompss script. An example of an invocation of the script
is:

$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar simple.Simple 1

A comprehensive description of the runcompss command is available in the Executing COMPSs applications section.

In addition to Java, COMPSs supports the execution of applications written in other languages by means of
bindings. A binding manages the interaction of the no-Java application with the COMPSs Java runtime, providing
the necessary language translation.

4.1. Java 67

COMPSs Documentation, 3.1

4.2 Python Binding

COMPSs features a binding for Python 2 and 3 applications. The next subsections explain how to program a
Python application for COMPSs and a brief overview on how to execute it.

4.2.1 Programming Model

The programming model for Python is structured in the following sections:

4.2.1.1 Task Definition

The task definition is structured in the following sections:

Task Selection

As in the case of Java, a COMPSs Python application is a Python sequential program that contains calls to tasks.
In particular, the user can select as a task:

e Functions
e Instance methods: methods invoked on objects
e (Class methods: static methods belonging to a class

The task definition in Python is done by means of Python decorators instead of an annotated interface. In partic-
ular, the user needs to add a @task decorator that describes the task before the definition of the function/method.

As an example (Code 21), let us assume that the application calls a function foo, which receives a file path (file_-
path — string parameter) and a string parameter (value). The code of foo appends the value into file_path.

Code 21: Python application example

def foo(file_path, value):
" Update the file 'file_path' with the 'value'"""
with open(file_path, "a") as fd:
fd.write(value)

def main():
my_file = "sample_file.txt"
with open(my_file, "w") as fd:
fd.write("Hello")
foo(my_file, "World")

if __name == '__main_

main()

In order to select foo as a task, the corresponding @task decorator needs to be placed right before the definition
of the function, providing some metadata about the parameters of that function. The @task decorator has to be
imported from the pycompss library (Code 22).

Code 22: Python task import

from pycompss.api.task import task

Otask(metadata)
def foo(parameters):

See complete example

68 Chapter 4. Application development

COMPSs Documentation, 3.1

Code 23: Python application example with @task definition

from pycompss.api.task import task
from pycompss.api.parameter import FILE_INOUT

Otask(file_path=FILE_INOUT)
def foo(file_path, value):
" Update the file 'file_path' with the 'value'"""
with open(file_path, "a") as fd:
fd.write(value)

def main():
my_file = "sample_file.txt"
with open(my_file, "w") as fd:
fd.write("Hello")
foo(my_file, "World")

if __name__ == '__main__"':
main()

Tip: The PyCOMPSs task api also provides the @task decorator in camelcase (@Task) with the same functionality.

The rationale of providing both @task and @Task relies on following the PEP8 naming convention. Decorators are
usually defined using lowercase, but since the task decorator is implemented following the class pattern, its name
is also available as camelcase.

Important: The file that contains tasks definitions MUST ONLY contain imports or the if __name__ ==
"__main__" section at the root level. For example, Code 22 includes only the import for the task decorator, and

the main code is included into the main function.

The rationale of this is due to the fact that the module is loaded from PyCOMPSs. Since the code included at the
root level of the file is executed when the module is loaded, this causes the execution to crash.

Function parameters

The @task decorator does not interfere with the function parameters, Consequently, the user can define the function
parameters as normal python functions (Code 24).

Code 24: Task function parameters example

Q@task()
def foo(paraml, param2):

The use of *args and **kwargs as function parameters is supported (Code 25).

Code 25: Python task *args and **kwargs example

Otask(returns=int)
def argkwarg_foo(xargs, **kwargs):

And even with other parameters, such as usual parameters and default defined arguments. Code 26 shows an
example of a task with two three parameters (whose one of them (s) has a default value (2)), *args and **kwargs.

4.2. Python Binding 69

COMPSs Documentation, 3.1

Code 26: Python task with default parameters example

Otask(returns=int)
def multiarguments_foo(v, w, s=2, *args, *xkwargs):

Tasks within classes

Functions within classes can also be declared as tasks as normal functions. The main difference is the existence of
the self parameter which enables to modify the callee object.

For tasks corresponding to instance methods, by default the task is assumed to modify the callee object (the object
on which the method is invoked). The programmer can tell otherwise by setting the target_direction argument
of the @task decorator to IN (Code 27).

Code 27: Python instance method example

class MyClass(object):

Otask(target_direction=IN)
def instance_method(self):
self is NOT modified here

Class methods and static methods can also be declared as tasks. The only requirement is to place the @classmethod
or @staticmethod over the @task decorator (Code 28). Note that there is no need to use the target_direction
flag within the @task decorator.

Code 28: Python @classmethod and @staticmethod tasks exam-
ple

class MyClass(object):

Q@classmethod
Otask()
def class_method(cls, a, b, c):

@staticmethod
Otask(returns=int)
def static_method(a, b, c):

Tip: Tasks inheritance and overriding supported!!!

Caution: The objects used as task parameters MUST BE serializable:

e Implement the __getstate__ and __setstate__ functions in their classes for those objects that are not
automatically serializable.

e The classes must not be declared in the same file that contains the main method (if __name__ ==

'__main__") (known pickle issue).

Important: For instances of user-defined classes, the classes of these objects should have an empty constructor,
otherwise the programmer will not be able to invoke task instance methods on those objects (Code 29).

70 Chapter 4. Application development

COMPSs Documentation, 3.1

Code 29: Using user-defined classes as task returns

In file utils.py
from pycompss.api.task import task
class MyClass(object):
def __init__(self): # empty constructor

Qtask()
def yet_another_task(self):
do something with the self attributes

In file main.py
from pycompss.api.task import task
from utils import MyClass

Otask(returns=MyClass)
def ret_foo():

myc = MyClass()
return myc
def main():
o = ret_foo()
tnvoking a task instance method on a future object can only

#
be done when an empty constructor is defined in the object's
class

o

.yet_another_task()

if __name__=='__main__"':
main()

See complete example

Code 30: utils.py

from pycompss.api.task import task
class MyClass(object):

def __init__(self):
" Initializes self.value with 0 """
self.value = 0O

Q@task()

def yet_another_task(self):
" Imcrements self.value """
self.value = self.value + 1

Code 31: main.py

from pycompss.api.task import task
from utils import MyClass

(continues on next page)

4.2. Python Binding 71

COMPSs Documentation, 3.1

(continued from previous page)

from pycompss.api.api import compss_wait_on

Otask(returns=MyClass)
def ret_foo():
myc = MyClass()
return myc

def main(Q):
o = ret_foo()
o.yet_another_task()
o = compss_wait_on(o)
print("Value: %d" % o.value)
if __name__=='__main__"':
main()

Task Parameters

The metadata corresponding to a parameter is specified as an argument of the @task decorator, whose name is the
formal parameter’s name and whose value defines the type and direction of the parameter. The parameter types
and directions can be:

Types
Primitive types (integer, long, float, boolean, strings)
Objects (instances of user-defined classes, dictionaries, lists, tuples, complex numbers)
Files
Collections (instances of lists)
Dictionaries (instances of dictionary)
Streams
e JO streams (for binaries)
Direction
e Read-only (IN - default or IN_DELETE)
Read-write (INOUT)
Write-only (0UT)
Concurrent (CONCURRENT)
Commutative (COMMUTATIVE)

COMPSs is able to automatically infer the parameter type for primitive types, strings and objects, while the user
needs to specify it for files. On the other hand, the direction is only mandatory for INOUT, OUT, CONCURRENT and
COMMUTATIVE parameters.

Note: Please note that in the following cases there is no need to include an argument in the @task decorator for
a given task parameter:

e Parameters of primitive types (integer, long, float, boolean) and strings: the type of these parameters can
be automatically inferred by COMPSs, and their direction is always IN.

e Read-only object parameters: the type of the parameter is automatically inferred, and the direction defaults
to IN.

The parameter metadata is available from the pycompss library (Code 32)

Code 32: Python task parameters import

from pycompss.api.parameter import *

72 Chapter 4. Application development

COMPSs Documentation, 3.1

Objects

The default type for a parameter is object. Consequently, there is no need to use a specific keyword. However, it
is necessary to indicate its direction (unless for input parameters):

PARAME- DESCRIPTION

TER

IN The parameter is read-only. The type will be inferred.

IN_DELETE The parameter is read-only. The type will be inferred. Will be automatically removed after its
usage.

INQUT The parameter is read-write. The type will be inferred.

ouT The parameter is write-only. The type will be inferred.

CONCURRENT | The parameter is read-write with concurrent access. The type will be inferred.

COMMUTATIVE | The parameter is read-write with commutative access. The type will be inferred.

Continuing with the example, in Code 33 the decorator specifies that foo has a parameter called obj, of type object
and INOUT direction. Note how the second parameter, i, does not need to be specified, since its type (integer) and
direction (IN) are automatically inferred by COMPSs.

Code 33:

Python task example with input output object (INOUT)

and input object (IN)

from pycompss.api.task import task
from pycompss.api.parameter import INOUT, IN

Otask(obj=INOUT, i=IN)
def foo(obj, i):

The previous task definition can be simplified due to the default IN direction for objects (Code 34):

Code 34:

Python task example with input output object (INOUT)

simplified

from pycompss.api.task import task
from pycompss.api.parameter import INOUT

@task (obj=INOUT)
def foo(obj, i):

Tip:

In order to choose the apropriate direction, a good exercise is to think if the function only consumes the

object (IN), modifies the object (INOUT), or produces an object (OUT).

Tip:

The IN_DELETE definition is intended to one use objects. Consequently, the information related to the

object will be released as soon as possible.

The user can also define that the access to a object is concurrent with CONCURRENT (Code 35). Tasks that share
a CONCURRENT parameter will be executed in parallel, if any other dependency prevents this. The CONCURRENT
direction allows users to have access from multiple tasks to the same object/file during their executions.

4.2. Python Binding

73

COMPSs Documentation, 3.1

Code 35: Python task example with CONCURRENT

from pycompss.api.task import task
from pycompss.api.parameter import CONCURRENT

O@task (obj=CONCURRENT)
def foo(obj, i):

Caution: COMPSs does not manage the interaction with the objects used/modified concurrently. Taking
care of the access/modification of the concurrent objects is responsibility of the developer.

Or even, the user can also define that the access to a parameter is commutative with COMMUTATIVE (Code 36).
The execution order of tasks that share a COMMUTATIVE parameter can be changed by the runtime following the
commutative property.

Code 36: Python task example with COMMUTATIVE

from pycompss.api.task import task
from pycompss.api.parameter import COMMUTATIVE

Otask (obj=COMMUTATIVE)
def foo(obj, i):

Files

It is possible to define that a parameter is a file (FILE), and its direction:

PARAMETER DESCRIPTION

FILE/FILE_IN The parameter is a file. The direction is assumed to be IN.
FILE_INOUT The parameter is a read-write file.

FILE_OUT The parameter is a write-only file.

FILE_CONCURRENT The parameter is a concurrent read-write file.
FILE_COMMUTATIVE | The parameter is a commutative read-write file.

Continuing with the example, in Code 37 the decorator specifies that foo has a parameter called £, of type FILE
and INOUT direction (FILE_INOUT).

Code 37: Python task example with input output file (FILE_INOUT)

from pycompss.api.task import task
from pycompss.api.parameter import FILE_INOUT

Otask (f=FILE_INOUT)

def foo(f):
fd = open(f, 'a+')
append something to fd
fd.close()

def main():
f = "/path/to/file.extension"

(continues on next page)

74 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

Populate f
foo(f)

Tip: The value for a FILE (e.g. f) is a string pointing to the file to be used at foo task. However, it can also be
None if it is optional. Consequently, the user can define task that can receive a FILE or not, and act accordingly.
For example (Code 38):

Code 38: Python task example with optional input file (FILE_IN)

from pycompss.api.task import task
from pycompss.api.parameter import FILE_IN

Otask (f=FILE_IN)
def foo(f):
if f:
Do something with the file
with open(f, 'r') as fd:
num_lines = len(rd.readlines())
return num_lines
else:
Do something when there ts no input file
return -1

def main():
f = "/path/to/file.extension"
Populate f
num_lines_f
g = None
num_lines_g = foo(g) # num_lines_g == -

Il

foo(f) # num_lines_f == actual number of lines of file.extension

The user can also define that the access to file parameter is concurrent with FILE_CONCURRENT (Code 39). Tasks
that share a FILE_CONCURRENT parameter will be executed in parallel, if any other dependency prevents this. The
CONCURRENT direction allows users to have access from multiple tasks to the same file during their executions.

Code 39: Python task example with FILE_CONCURRENT

from pycompss.api.task import task
from pycompss.api.parameter import FILE_CONCURRENT

Otask (f=FILE_CONCURRENT)
def foo(f, i):

Caution: COMPSs does not manage the interaction with the files used /modified concurrently. Taking care
of the access/modification of the concurrent files is responsibility of the developer.

Or even, the user can also define that the access to a parameter is a file FILE_COMMUTATIVE (Code 40). The
execution order of tasks that share a FILE_COMMUTATIVE parameter can be changed by the runtime following the
commutative property.

4.2. Python Binding 75

COMPSs Documentation, 3.1

Code 40: Python task example with FILE_COMMUTATIVE

from pycompss.api.task import task
from pycompss.api.parameter import FILE_COMMUTATIVE

Otask (f=FILE_COMMUTATIVE)
def foo(f, i):

Directories

In addition to files, it is possible to define that a parameter is a directory (DIRECTORY), and its direction:

PARAMETER | DESCRIPTION

DIRECTORY_- | The parameter is a directory and the direction is IN. The directory will be compressed before
IN any transfer amongst nodes.

DIRECTORY_- | The parameter is a read-write directory. The directory will be compressed before any transfer
INOUT amongst nodes.

DIRECTORY_- | The parameter is a write-only directory. The directory will be compressed before any transfer
ouT amongst nodes.

The definition of a DIRECTORY parameter is shown in Code 41. The decorator specifies that foo has a parameter
called d, of type DIRECTORY and INOUT direction.

Code 41: Python task example with input output directory
(DIRECTORY_INOUT)

from pycompss.api.task import task
from pycompss.api.parameter import DIRECTORY_INOUT

Otask (d=DIRECTORY_INOUT)
def foo(d):

Collections

It is possible to specify that a parameter is a collection of elements (e.g. list) and its direction.

PARAMETER DESCRIPTION

COLLECTION_IN The parameter is read-only collection.

COLLECTION_IN_- The parameter is read-only collection for single usage (will be automatically removed
DELETE after its usage).

COLLECTION_INQUT The parameter is read-write collection.

COLLECTION_OUT The parameter is write-only collection.

In this case (Code 42), the list may contain sub-objects that will be handled automatically by the runtime. It is
important to annotate data structures as collections if in other tasks there are accesses to individual elements of
these collections as parameters. Without this annotation, the runtime will not be able to identify data dependences
between the collections and the individual elements.

76 Chapter 4. Application development

COMPSs Documentation, 3.1

Code 42: Python task example with COLLECTION (IN)

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION

Otask(my_collection=COLLECTION)
def foo(my_collection):
for element in my_collection:

Caution: The current support for collections is limited to static number of elements lists.

Consequently, the length of the collection must be kept during the execution, and it is NOT possible to append
or delete elements from the collection in the tasks (only to receive elements or to modify the existing if they
are not primitives).

The sub-objects of the collection can be collections of elements (and recursively). In this case, the runtime also
keeps track of all elements contained in all sub-collections. In order to improve the performance, the depth of the
sub-objects can be limited through the use of the depth parameter (Code 43)

Code 43: Python task example with COLLECTION_IN and Depth

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION_IN

Otask(my_collection={Type:COLLECTION_IN, Depth:2})
def foo(my_collection):
for inner_collection in my_collection:
for element in inner_collection:
The contents of element will not be tracked

Tip: A collection can contain dictionaries, and will be analyzed automatically.

Tip: If the collection is intended to be used only once with IN direction, the COLLECTION_IN_DELETE type is
recommended, since it automatically removes the entire collection after the task. This enables to release as soon
as possible memory and storage.

Collections of files

It is also possible to specify that a parameter is a collection of files (e.g. list) and its direction.

PARAMETER DESCRIPTION

COLLECTION_FILE/COLLECTION_FILE_IN | The parameter is read-only collection of files.
COLLECTION_FILE_INOUT The parameter is read-write collection of files.
COLLECTION_FILE_OUT The parameter is write-only collection of files.

In this case (Code 44), the list may contain files that will be handled automatically by the runtime. It is important
to annotate data structures as collections if in other tasks there are accesses to individual elements of these
collections as parameters. Without this annotation, the runtime will not be able to identify data dependences
between the collections and the individual elements.

4.2. Python Binding 77

COMPSs Documentation, 3.1

Code 44: Python task example with COLLECTION_FILE (IN)

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION_FILE

Otask(my_collection=COLLECTION_FILE)
def foo(my_collection):
for file in my_collection:

The file of the collection can be collections of elements (and recursively). In this case, the runtime also keeps track
of all files contained in all sub-collections. In order to improve the performance, the depth of the sub-files can be
limited through the use of the depth parameter as with objects (Code 43)

Caution: The current support for collections of files is also limited to a static number of elements, as
with Collections.

Dictionaries

It is possible to specify that a parameter is a dictionary of elements (e.g. dict) and its direction.

PARAMETER DESCRIPTION

DICTIONARY_IN The parameter is read-only dictionary.

DICTIONARY_IN_- The parameter is read-only dictionary for single usage (will be automatically removed
DELETE after its usage).

DICTIONARY_INOUT The parameter is read-write dictionary.

As with the collections, it is possible to specify that a parameter is a dictionary of elements (e.g. dict) and its direc-
tion (DICTIONARY IN or DICTIONARY INOUT) (Code 45), whose sub-objects will be handled automatically
by the runtime.

Code 45: Python task example with DICTIONARY (IN)

from pycompss.api.task import task
from pycompss.api.parameter import DICTIONARY

Otask(my_dictionary=DICTIONARY)
def foo(my_dictionary):
for k, v in my_dictionary.items():

Caution: The current support for dictionaries is also limited to a static number of elements, as with
Collections.

The sub-objects of the dictionary can be collections or dictionary of elements (and recursively). In this case, the
runtime also keeps track of all elements contained in all sub-collections/sub-dictionaries. In order to improve the
performance, the depth of the sub-objects can be limited through the use of the depth parameter (Code 46)

Code 46: Python task example with DICTIONARY_IN and Depth

from pycompss.api.task import task
from pycompss.api.parameter import DICTIONARY_IN

(continues on next page)

78 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

Otask(my_dictionary={Type:DICTIONARY_IN, Depth:2})
def foo(my_dictionary):
for key, inner_dictionary in my_dictionary.items():
for sub_key, sub_value in inner_dictionary.items():
The contents of element will not be tracked

Tip: A dictionary can contain collections, and will be analyzed automatically.

Tip: If the dictionary is intended to be used only once with IN direction, the DICTIONARY_IN_DELETE type is
recommended, since it automatically removes the entire dictionary after the task. This enables to release as soon
as possible memory and storage.

Streams

It is possible to use streams as input or output of the tasks by defining that a parameter is STREAM and its direction.

PARAMETER | DESCRIPTION
STREAM_IN The parameter is a read-only stream.
STREAM_QUT The parameter is a write-only stream.

For example, Code 47 shows an example using STREAM_IN or STREAM_QUT parameters This parameters enable to
mix a task-driven workflow with a data-driven workflow.

Code 47: Python task example with STREAM_IN and STREAM_QUT

from pycompss.api.task import task
from pycompss.api.parameter import STREAM_IN
from pycompss.api.parameter import STREAM_OUT

Otask(ods=STREAM_OUT)
def write_objects(ods):

for i in range(NUM_OBJECTS):
Build object
obj = MyObject()
Publish object
ods.publish(obj)

Mark the stream for closure
ods.close()

Otask(ods=STREAM_IN, returns=int)
def read_objects(ods):

num_total = 0

while not ods.is_closed():
Poll new objects
new_objects = ods.poll()
Process files

(continues on next page)

4.2. Python Binding 79

COMPSs Documentation, 3.1

(continued from previous page)

Accumulate read files
num_total += len(new_objects)

Return the number of processed files
return num_total

The stream parameter also supports Files (Code 48).

Code 48: Python task example with STREAM_IN and STREAM_OUT
for files

from pycompss.api.task import task
from pycompss.api.parameter import STREAM_IN
from pycompss.api.parameter import STREAM_OUT

Otask (fds=STREAM_OUT)
def write_files(fds):

for i in range(NUM_FILES):
file_name = str(uuid.uuid4())
Write file
with open(file_path, 'w') as f:
f.write("Test " + str(i))

Mark the stream for closure
fds.close()

Otask(fds=STREAM_IN, returns=int)
def read_files(fds):

num_total = 0
while not fds.is_closed():
Poll new files
new_files = fds.poll()
Process files
for nf in new_files:
with open(nf, 'r') as f:

Accumulate read files

num_total += len(new_files)

Return the number of processed files
return num_total

In addition, the stream parameter can also be defined for binary tasks (Code 49).

Code 49: Python task example with STREAM_OUT for binaries

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import STREAM_OUT

@binary(binary="file_generator.sh")
Otask (£ds=STREAM_QUT)

(continues on next page)

80 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

def write_files(fds):
Equivalent to: ./file_generator.sh > fds
pass

Code 50 shows an example of how streams are used in the main code. In this code snippet we can see how the
object representing the data stream is created how the a producer task is invoqued and how the stream data
generated at tasks can be poll from the main code.

Code 50: Python task example using streams in the main code

from pycompss.api.task import task
from pycompss.api.parameter import STREAM_OUT
from pycompss.streams.distro_stream import ObjectDistroStream

Otask(ods=STREAM_OUT)
def write_objects(ods):

for i in range(NUM_OBJECTS):
Build object
obj = MyObject()
Publish object
ods.publish(obj)

Mark the stream for closure
ods.close()

Qtask()
def process_object(obj):

Do something with obj

if __name__=='__main__"':

ods = ObjectDistroStream()

Create producers
for _ in range(num_producers):
write_objects(ods, producer_sleep)

Process stream

while not ods.is_closed():
Poll new objects
new_objects = ods.poll()

Process received objects
for obj in new_objects:
res = process_object(obj)

4.2. Python Binding 81

COMPSs Documentation, 3.1

Standard Streams

Finally, a parameter can also be defined as the standard input, standard output, and standard error.

PARAMETER | DESCRIPTION

STDIN The parameter is a IO stream for standard input redirection.
STDOUT The parameter is a IO stream for standard output redirection.
STDERR The parameter is a IO stream for standard error redirection.

Caution: STDIN, STDOUT and STDERR are only supported in binary tasks

This is particularly useful with binary tasks that consume/produce from standard IO streams, and the user wants
to redirect the standard input/output/error to a particular file. Code 51 shows an example of a binary task that
invokes output generator.sh which produces the result in the standard output, and the task takes that output and
stores it into fds.

Code 51: Python task example with STDOUT for binaries

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import STDOUT

@binary (binary="output_generator.sh")

Otask (£ds=STDOUT)

def write_files(fds):
Equivalent to: ./file_generator.sh > fds
pass

Other Task Parameters
Task time out

The user is also able to define the time out of a task within the @task decorator with the time_out=<TIME_IN_-
SECONDS> hint. The runtime will cancel the task if the time to execute the task exceeds the time defined by the
user. For example, Code 52 shows how to specify that the unknown_duration_task maximum duration before
canceling (if exceeded) is one hour.

82 Chapter 4. Application development

COMPSs Documentation, 3.1

Code 52: Python task time_out example

Otask(time_out=3600)
def unknown_duration_task(self):

Scheduler hints

The programmer can provide hints to the scheduler through specific arguments within the @task decorator.

For instance, the programmer can mark a task as a high-priority task with the priority argument of the @task
decorator (Code 53). In this way, when the task is free of dependencies, it will be scheduled before any of the
available low-priority (regular) tasks. This functionality is useful for tasks that are in the critical path of the
application’s task dependency graph.

Code 53: Python task priority example

Otask(priority=True)
def func(:

Moreover, the user can also mark a task as distributed with the is_ distributed argument or as replicated with
the is_replicated argument (Code 54). When a task is marked with is_distributed=True, the method must be
scheduled in a forced round robin among the available resources. On the other hand, when a task is marked with
is_replicated=True, the method must be executed in all the worker nodes when invoked from the main application.
The default value for these parameters is False.

Code 54: Python task is distributed and is_replicated examples

Otask(is_distributed=True)
def func():

Otask(is_replicated=True)
def func2():

On failure task behaviour

In case a task fails, the whole application behaviour can be defined using the @on_ failure decorator on top of the
@task decorator (Code 55). It has four possible values that can be defined with the management parameter:
‘RETRY’, "CANCEL _SUCCESSORS’, ’FAIL’ and IGNORE’. 'RETRY” is the default behaviour, making
the task to be executed again (on the same worker or in another worker if the failure remains). ’CANCEL -
SUCCESSORS’ ignores the failed task and cancels the execution of the successor tasks, 'FAIL’ stops the whole
execution once a task fails and TGNORE’ ignores the failure and continues with the normal execution.

Code 55: Python task @on_ failure decorator example

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure

Qon_failure(management ='CANCEL_SUCCESSORS')
Qtask()
def func():

4.2. Python Binding 83

COMPSs Documentation, 3.1

Since the "CANCEL SUCCESSORS’ and ’YIGNORE’ policies enable to continue the execution accepting
that tasks may have failed, it is possible to define the value for the objects and/or files produced by the failed tasks
(INOUT, OUT, FILE INOUT, FILE _OUT and return). This is considered as the default output objects/files.
For example, Code 56 shows a the func task which returns one integer. In the case of failure within func, the
execution of the workflow will continue since the on failure management policy is set to IGNORE’, with 0 as
return value.

Code 56: Python task @on_ failure example with default return
value

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure

Qon_failure(management='IGNORE', returns=0)
Otask(returns=int)
def func(:

For the INOUT parameters, the default value can be set by using the parameter name of func in the @on_ failure
decorator. Code 57 shows how to define the default value for a FILE INOUT parameter (named f_inout). The
example is also valid for FILE OUT values.

Code 57: Python task @on_ failure example with default FILE -
INOUT value

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure
from pycompss.api.parameter import FILE_INOUT

Q@on_failure(management='IGNORE', f_inout="/path/to/default.file")
@task(f_inout=FILE_INOUT)
def func(f_inout):

Tip: The default FILE _INOUT/FILE OUT can be generated at task generation time by calling a function
instead of providing a static file path. Code 58 shows an example of this case, where the default value for the
output file produced by func is defined by the generate_empty function.

84 Chapter 4. Application development

COMPSs Documentation, 3.1

Code 58: Python task @on_ failure example with default FILE -
OUT value from function

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure
from pycompss.api.parameter import FILE_OUT

def generate_empty(msg, name):
empty_file = "/tmp/empty_file_" + name
with open(empty_file, 'w') as f:
f.write("EMPTY FILE " + msg)

return empty_file

Q@on_failure(management='IGNORE', f_out=generate_empty("OUT", "out.tmp"))

Otask (f_out=FILE_0UT)
def func(f_inout):

Task Parameters Summary

:numref:task_arguments summarizes all arguments that can be found in the @task decorator.

Table 8: Arguments of the @task decorator

Argument Value

Formal parameter name | (default: empty) The parameter is an object or a simple
IN Read-only parameter, all types.
IN DELETE Read-only parameter, all types. Autom:
INOUT Read-write parameter, all types except |
ouT Write-only parameter, all types except f
CONCURRENT Concurrent read-write parameter, all ty;
COMMUTATIVE Commutative read-write parameter, all
FILE(_IN) Read-only file parameter.
FILE INOUT Read-write file parameter.
FILE OUT Write-only file parameter.

FILE CONCURRENT

Concurrent read-write file parameter.

FILE COMMUTATIVE

Commutative read-write file parameter.

DIRECTORY(_IN)

The parameter is a read-only directory.

DIRECTORY INOUT

The parameter is a read-write directory.

DIRECTORY_ _OUT

the parameter is a write-only directory.

COLLECTION(_IN)

Read-only collection parameter (list).

COLLECTION IN_ DELETE

Single usage read-only collection parame

COLLECTION INOUT

Read-write collection parameter (1ist).

COLLECTION OUT

Read-only collection parameter (list).

COLLECTION FILE(_IN)

Read-only collection of files parameter (

COLLECTION FILE INOUT

Read-write collection of files parameter

COLLECTION FILE_OUT

Read-only collection of files parameter (

DICTIONARY(_IN)

Read-only dictionary parameter (dict).

DICTIONARY IN DELETE

Single usage read-only collection diction

DICTIONARY INOUT

Read-write dictionary parameter (dict)

STREAM IN The parameter is a read-only stream.
STREAM OUT The parameter is a write-only stream.
STDIN The parameter is a file for standard inp
STDOUT The parameter is a file for standard out
STDERR The parameter is a file for standard errc

4.2. Python Binding

85

COMPSs Documentation, 3.1

Table 8 — continued from previous page

Argument Value
Explicit: {Type: (empty=object)/FILE/COLLECTION/DICTIONARY, Direction: (empty=IN)/IN,
INOUT/0UT/CONCURRENT}

returns Return type or number of returned elements

target direction INOUT (default), IN or CONCURRENT

priority True or False (default)

is_distributed True or False (default)

is_replicated True or False (default)

on_failure 'RETRY’ (default), 'CANCEL SUCCESSORS’, 'FAIL’ or IGNORE’

time _out int (time in seconds)

cache returns True or False (default) - Requires to enable the cache

is_reduce True or False (default)

chunk_ size Reduction chunk size (int)

numba True or False (default) or mode (string)

numba_ flags Numba flags (dictionary of strings)

numba_signature Numba signature (1ist of strings)

numba_ declaration Numba declaration (string)

Task Return

If the function or method returns a value, the programmer can use the returns argument within the @task decorator.
In this argument, the programmer can specify the type of that value (Code 59).

Code 59: Python task returns example

Otask(returns=int)
def ret_func():
return 1

Moreover, if the function or method returns more than one value, the programmer can specify how many and their
type in the returns argument. Code 60 shows how to specify that two values (an integer and a list) are returned.

Code 60: Python task with multireturn example

Otask(returns=(int, list))
def ret_func():
return 1, [2, 3]

Alternatively, the user can specify the number of return statements as an integer value (Code 61). This way of
specifying the amount of return eases the returns definition since the user does not need to specify explicitly the
type of the return arguments. However, it must be considered that the type of the object returned when the task is
invoked will be a future object. This consideration may lead to an error if the user expects to invoke a task defined
within an object returned by a previous task. In this scenario, the solution is to specify explicitly the return type.

Code 61: Python task returns with integer example

Otask(returns=1)
def ret_func():
return "my_string"

Otask(returns=2)
def ret_func():
return 1, [2, 3]

Important: If the programmer selects as a task a function or method that returns a value, that value is not
generated until the task executes (Code 62).

86 Chapter 4. Application development

COMPSs Documentation, 3.1

Code 62: Task return value generation

Otask(return=MyClass)
def ret_func():
return MyClass(...)

if __name__=='__main__"':

o = ret_func() # o is a future object

The object returned can be involved in a subsequent task call, and the COMPSs runtime will automatically find
the corresponding data dependency. In the following example, the object o is passed as a parameter and callee of
two subsequent (asynchronous) tasks, respectively (Code 63).

Code 63: Task return value subsequent usage

if __name__=='__main__"':

0o 1s a future object
o = ret_func()

another_task(o)

o.yet_another_task()

Tip: PyCOMPSs is able to infer if the task returns something and its amount in most cases. Consequently,
the user can specify the task without returns argument. But this is discouraged since it requires code analysis,
including an overhead that can be avoided by using the returns argument.

Tip: PyCOMPSs is compatible with Python 3 type hinting. So, if type hinting is present in the code, PyCOMPSs
is able to detect the return type and use it (there is no need to use the returns):

4.2. Python Binding 87

COMPSs Documentation, 3.1

Code 64: Python task returns with type hinting

@task()
def ret_func() -> str:
return "my_string"

Otask()
def ret_func() -> (int, list):
return 1, [2, 3]

Other task types

In addition to this API functions, the programmer can use a set of decorators for other purposes.

Important: NOTE: If defined, these decorators must be placed after (below) the @constraint decorator, and
before (on top of) the @task decorator.

The following subparagraphs describe their usage.

Binary decorator

The @binary (or @Binary) decorator shall be used to define that a task is going to invoke a binary executable.

In this context, the @task decorator parameters will be used as the binary invocation parameters (following their
order in the function definition). Since the invocation parameters can be of different nature, information on their
type can be provided through the @task decorator.

Code 65 shows the most simple binary task definition without/with constraints (without parameters); please note
that Qconstraint decorator has to be provided on top of the others.

Code 65: Binary task example

from pycompss.api.task import task
from pycompss.api.binary import binary

@binary (binary="mybinary.bin")
Otask()
def binary_func():

pass

Qconstraint (computing_units="2")
@binary (binary="otherbinary.bin")
Otask()
def binary_func2():

pass

The invocation of these tasks would be equivalent to:

$./mybinary.bin
$./otherbinary.bin # im resources that respect the constraint.

The @binary decorator supports the working_dir parameter to define the working directory for the execution of
the defined binary.

Code 66 shows a more complex binary invocation, with files as parameters:

88 Chapter 4. Application development

COMPSs Documentation, 3.1

Code 66: Binary task example 2

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

Obinary(binary="grep", working_dir=".")
Otask(infile={Type:FILE_IN_STDIN}, result={Type:FILE_OUT_STDOUT})
def grepper():

pass

This task definition ts equivalent to the following, which ts more verbose:
@binary(binary="grep", working_dir=".")

Otask(infile={Type:FILE_IN, StdIOStream:STDIN}, result={Type:FILE_OUT, StdIOStream:STDOUT})
def grepper(keyword, infile, result):

pass
if __name__=='__main__"':
infile = "infile.txt"

outfile = "outfile.txt"
grepper ("Hi", infile, outfile)

The invocation of the grepper task would be equivalent to:

$ # grep keyword < infile > result
$ grep Hi < infile.txt > outfile.txt

Please note that the keyword parameter is a string, and it is respected as is in the invocation call. Another way
of passing task parameters to binary execution command is to use ~args™ parameter in the binary definition. In
this case, task parameters should be defined between curly braces and the full string with parameter replacements
will be added to the command. In the following example, value of ‘param 1’ is added to the execution command
after -d’ arg:

Code 67: Binary task example 3

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

@binary(binary="date", args= "-d {{param_1}}")

Otask()

def print_date(param_1):
pass

if __name__=='__main__"':

print_date("next Monday")

The invocation of the print_date task would be equivalent to:

$ # date -d param_1
$ date -d "next Monday"

Thus, PyCOMPSs can also deal with prefixes for the given parameters. Code 68 performs a system call (Is) with
specific prefixes:

4.2. Python Binding 89

COMPSs Documentation, 3.1

Code 68: Binary task example 4

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

Obinary(binary="1s")
Otask(hide={Type:FILE_IN, Prefix:"--hide="}, sort={Prefix:"--sort="})
def myLs(flag, hide, sort):

pass
if __name__=='__main__"':
flag = '-1'
hideFile = "fileToHide.txt"
sort = "time"

myLs(flag, hideFile, sort)

The invocation of the myLs task would be equivalent to:

$ # ls -1 --hide=hide --sort=sort
$ 1s -1 --hide=fileToHide.txt --sort=time

This particular case is intended to show all the power of the @binary decorator in conjuntion with the @task deco-
rator. Please note that although the hide parameter is used as a prefix for the binary invocation, the file ToHide.txt
would also be transfered to the worker (if necessary) since its type is defined as FILE IN. This feature enables to
build more complex binary invocations.

In addition, the @binary decorator also supports the fail_by_exit_value parameter to define the failure of the
task by the exit value of the binary (Code 69). It accepts a boolean (True to consider the task failed if the exit
value is not 0, or False to ignore the failure by the exit value (default)), or a string to determine the environment
variable that defines the fail by exit value (as boolean). The default behaviour (fail_by_exit_value=False)
allows users to receive the exit value of the binary as the task return value, and take the necessary decissions based
on this value.

Code 69: Binary task example with fail_by_exit_value

@binary(binary="mybinary.bin", fail_by_exit_value=True)
Otask()
def binary_func():

pass

OmpSs decorator

The @ompss (or @OmpSs) decorator shall be used to define that a task is going to invoke a OmpSs executable
(Code 70).

Code 70: OmpSs task example

from pycompss.api.ompss import ompss

Qompss (binary="ompssApp.bin")
Otask()
def ompss_func():

pass

The OmpSs executable invocation can also be enriched with parameters, files and prefixes as with the @binary
decorator through the function parameters and @task decorator information. Please, check Binary decorator for
more details.

20 Chapter 4. Application development

COMPSs Documentation, 3.1

MPI decorator

The @mpi (or @Mpi) decorator shall be used to define that a task is going to invoke a MPI executable (Code 71).

Code 71: MPI task example

from pycompss.api.mpi import mpi

Ompi (binary="mpiApp.bin", runner="mpirun", processes=2)
Qtask()
def mpi_func():

pass

The MPI executable invocation can also be enriched with parameters, files and prefixes as with the @binary
decorator through the function parameters and @task decorator information. Please, check Binary decorator for
more details.

The @mpi decorator can be also used to execute a MPI for python (mpidpy) code. To indicate it, developers only
need to remove the binary field and include the Python MPI task implementation inside the function body as
shown in the following example (Code 72).

Code 72: Python MPI task example.

from pycompss.api.mpi import mpi

Ompi(processes=4)

Q@task()

def layout_test_with_all():
from mpi4py import MPI
rank = MPI.COMM_WORLD.rank
return rank

In both cases, users can also define, MPI + OpenMP tasks by using processes property to indicate the number
of MPI processes and computing_units in the Task Constraints to indicate the number of OpenMP threads per
MPI process.

Users can also limit the distribution of the MPI processes through the nodes by using the processes_per_node
property. In the following example (Code 73) the four MPI processes defined in the task will be divided in two
groups of two processes. And all the processes of each group will be allocated to the same node. It will ensure
that the defined MPI task will use up to two nodes.

Code 73: MPI task example grouping MPI processes

from pycompss.api.mpi import mpi

@mpi(processes=4, processes_per_node=2)
Otask()
def layout_test_with_all():

from mpid4py import MPI

rank = MPI.COMM_WORLD.rank

return rank

The @mpi decorator can be combined with collections to allow the process of a list of parameters in the same
MPI execution. By the default, all parameters of the list will be deserialized to all the MPI processes. However,
a common pattern in MPI is that each MPI processes performs the computation in a subset of data. So, all data
serialization is not needed. To indicate the subset used by each MPI process, developers can use the data_layout
notation inside the MPI task declaration.

4.2. Python Binding 91

COMPSs Documentation, 3.1

Code 74: MPI task example with collections and data layout

from pycompss.api.mpi import mpi

@mpi(processes=4, col_layout={block_count: 4, block_length: 2, stride: 1})
0task(col=COLLECTION_IN, returns=4)
def layout_test_with_all(col):

from mpid4py import MPI

rank = MPI.COMM_WORLD.rank

return datal[0]+data[1]+rank

Figure (Code 74) shows an example about how to combine MPI tasks with collections and data layouts. In this
example, we have define a MPI task with an input collection (col). We have also defined a data layout with
the property <arg_name>_layout and we specify the number of blocks (block_count), the elements per block
(block_length), and the number of element between the starting block points (stride).

Users can specify the MPI runner command with the runner how ever the arguments passed to the mpirun
command differs depending on the implementation. To ensure that the correct arguments are passed to the
runner, users can define the COMPSS_MPIRUN_TYPE environment variable. The current supported values are impi
for Intel MPI and ompi for OpenMPI. Other MPI implementation can be supported by adding its corresponding
properties file in the folder $COMPSS_HOME/Runtime/configuration/mpi.

MPMD MPI decorator

The @mpmd_ mpi decorator can be used to define Multiple Program Multiple Data (MPMD) MPI tasks as shown
in the following example (Code 75):

Code 75: MPMD MPI task example

from pycompss.api.mpmd_mpi import mpmd_mpi

Ompmd_mpi (runner="mpirun",
programs=[
dict(binary="hostname", processes=2),
dict(binary="date", processes=2)

D
@task()
def basic():
pass

The definition implies that MPMD MPI command will be run by ‘mpirun’, and will execute 2 processes for
‘hostname’, and 2 processes to show the ¢ date’. It’s not mandatory to specify total number of programs as long
as they are added inside programs list of dictionaries argument.

Each of the MPMD MPI programs must at least have binary, but also can have processes and args string (Code
76):

Code 76: MPMD MPI task example

from pycompss.api.mpmd_mpi import mpmd_mpi

O@mpmd_mpi (runner="mpirun",
programs=[
dict(binary="date", processes=2, args="-d {{first}}"),
dict(binary="date", processes=4, args="-d {{second}}")
D
Qtask()

(continues on next page)

92 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

def task_args(first, second):
pass

def print_monday_friday(self):
task_args("next monday", "next friday")
compss_barrier()

When executed, this MPMD MPI program would invoke 2 MPI processes to print the date of next Monday, and 4
processes for next Friday. “args” string replaces every parameter that is ‘called’ between double curly braces with
their real value. This allows using multiple FILE_IN parameters for multiple MPI programs. Moreover, output of
the full MPMD MPI programs can be forwarded to an FILE_OUT_STDOUT param:

Code 77: MPMD MPI task example

from pycompss.api.mpmd_mpi import mpmd_mpi

@mpmd_mpi (runner="mpirun",
programs=[
dict(binary="grep", args="{{keyword}} {{in_file_1}}"),
dict(binary="grep", args="{{keyword}} {{in_file_2}}"),
D
Otask(in_file=FILE_IN, result={Type: FILE_OUT_STDOUT})
def std_out(keyword, in_file_1, in_file_2, result):
pass

Other parameters of @mpmd_ mpi decorator such as working_dir, fail_by_exit_value, processes_per_node,
have the same behaviors as in @myps.

I/0 decorator

The @IO decorator is used to declare a task as an I/O task. I/O tasks exclusively perform I/O (i.e., reading or
writing) and should not perform any computations.

Code 78: 1/0 task example

from pycompss.api.I0 import IO

QI0Q)

@task()

def io_func(text):
fh = open("dump_file", "w")
fh.write(text)
fh.close()

The execution of I/O tasks can overlap with the execution of non-IO tasks (i.e., tasks that do not use the @IO
decorator) if there are no dependencies between them. In addition to that, the scheduling of I/O tasks does not
depend on the availability of computing units. For instance, an I/O task can be still scheduled and executed on a
certain node even if all the CPUs on that node are busy executing non-1/0 tasks. Hence, increasing parallelism
level.

The @IO decorator can be also used on top of the @mpi decorator (MPI decorator) to declare a task that performs
parallel I/O. Example Code 79 shows a MPI-IO task that does collective I/O with a NumPy array.

Code 79: Python MPI-1IO task example.

from pycompss.api.IO0 import IO
from pycompss.api.mpi import mpi

(continues on next page)

4.2. Python Binding 93

COMPSs Documentation, 3.1

(continued from previous page)

@100

Ompi(processes=4)

Q@task()

def mpi_io_func(text_chunks):
from mpi4py import MPI
import numpy as np

fmode = MPI.MODE_WRONLY|MPI.MODE_CREATE
fh = MPI.File.Open(MPI.COMM_WORLD, "dump_file", fmode)

buffer = np.empty(20, dtype=np.int)
buffer[:] = MPI.COMM_WORLD.Get_rank()

offset = MPI.COMM_WORLD.Get_rank() * buffer.nbytes
fh.Write_at_all(offset, buffer)

fh.Close()

COMPSs decorator

The @compss (or @QCOMPSs) decorator shall be used to define that a task is going to be a COMPSs application
(Code 80). It enables to have nested PyCOMPSs/COMPSs applications.

Code 80: COMPSs task example

from pycompss.api.compss import compss

Qcompss (runcompss="${RUNCOMPSS}", flags="-d",
app_name="/path/to/simple_compss_nested.py", computing_nodes="2")
Otask()
def compss_func():
pass

The COMPSs application invocation can also be enriched with the flags accepted by the runcompss executable.
Please, check execution manual for more details about the supported flags.

Multinode decorator

The @multinode (or @Multinode) decorator shall be used to define that a task is going to use multiple nodes (e.g.
using internal parallelism) (Code 81).

Code 81: Multinode task example

from pycompss.api.multinode import multinode

@multinode (computing_nodes="2")
Qtask()
def multinode_func():

pass

The only supported parameter is computing nodes, used to define the number of nodes required by the task (the
default value is 1). The mechanism to get the number of nodes, threads and their names to the task is through the
COMPSS NUM_NODES, COMPSS NUM _ THREADS and COMPSS HOSTNAMES environment variables
respectively, which are exported within the task scope by the COMPSs runtime before the task execution.

94 Chapter 4. Application development

COMPSs Documentation, 3.1

HTTP decorator

The @http decorator can be used for the tasks to be executed on a remote Web Service via HT'TP requests. In
order to create HTTP tasks, it is obligatory to define HTTP resource(s) in resources and project files (see
HTTP configuration). Following code snippet (Code 82) is a basic HT'TP task with all required parameters. At
the time of execution, the runtime will search for HTTP resource from resources file which allows execution of
‘service 1’ and send a GET request to its ‘Base URL’. Moreover, python parameters can be added to the request
query as shown in the example (between double curly brackets).

Code 82: HTTP Task example.

from pycompss.api.task import task
from pycompss.api.http import http

O@http(service_name="service_1", request="GET",
resource="get_length/{{message}}")
Otask(returns=int)
def an_example (message):
pass

For POST requests it is possible to send a parameter as the request body by adding it to the payload arg. In this
case, payload type can also be specified (‘application/json’ by default). If the parameter is a FILE type, then the
content of the file is read in the master and added to the request as request body.

Code 83: HTTP Task with POST request.

from pycompss.api.task import task
from pycompss.api.http import http

O@http(service_name="service_1", request="POST", resource="post_json/",
payload="{{payload}}", payload_type="application/json")
Otask(returns=str)
def post_with_param(payload):
pass

For the cases where the response body is a JSON formatted string, PyCOMPSs” HTTP decorator allows response
string formatting by defining the return values within the produces parameter. In the following example, the
return value of the task would be extracted from ‘length’ key of the JSON response string:

Code 84: HTTP Task with return value to be extracted from a
JSON string.

from pycompss.api.task import task
from pycompss.api.http import http

@http(service_name="service_1", request="GET",
resource="produce_format/{{messagel}}",
produces="{"'length':'{{return_0}}'}")

Otask(returns=int)

def an_example(message):

pass

Note that if the task has multiple returns, ‘return_0’, ‘return_1’, return_2, etc. all must be defined in the
produces string.

It is also possible to take advantages of INOUT python dicts within HTTP tasks. In this case, updates string can
be used to update the INOUT dict:

4.2. Python Binding 95

COMPSs Documentation, 3.1

Code 85: HTTP Task with return value to be extracted from a
JSON string.

@http(service_name="service_1", request="GET",
resource="produce_format/test",
produces="{'length':'{{return_0}}', 'child_json':{'depth_1':'one', 'message':'{{param}}
'3,
updates='{{event}}.some_key = {{param}}')
Otask (event=INOUT)
def http_updates(event):

nnn

nmnn

pass

In the example above, ‘some key’ key of the INOUT dict param will be updated according to the response. Please
note that the {{param}} is defined inside produces. In other words, parameters that are defined inside produces
string can be used in updates to update INOUT dicts.

Important: Disclaimer: Due to serialization limitations, with the current implementation, outputs of regular
PyCOMPSs tasks cannot be passed as input parameters to http tasks.

Disclaimer: COLLECTION * and DICTIONARY _* type of parameters are not supported within HT'TP tasks.
However, Python lists and dictionary objects can be used.

Reduction decorator

The @reduction (or @Reduction) decorator shall be used to define that a task is going to be subdivided into smaller
tasks that take as input a subset of the input data (one COLLECTION).

The only supported parameter is chunk _size, used to define the size of the data that the generated tasks will get
as input parameter. The data given as input to the main reduction task is subdivided into chunks of the set size.

Code 86 shows how to declare a reduction task. In detail, this application calls 10 times to calculate_area and
appends the results into areas list. Then, invokes the sum_reduction task (that is declared as a reduction task)
with the areas list and has chunk_size=2. Although it is invoked once, the COMPSs runtime splits the input
data (areas) into chunks of 2 elements, and applies the sum_reduction function to them until the final result is
achieved. Then, the compss_wait_on retrieves the final result and it is printed.

Code 86: Reduction task example

from pycompss.api.reduction import reduction
from pycompss.api.task import task

from pycompss.api.parameter import COLLECTION_IN
from pycompss.api.api import compss_wait_on

Otask(returns=int)
def calculate_area(height, width):
return height * width

@reduction(chunk_size="2")
Otask(returns=int, areas=COLLECTION_IN)
def sum_reduction(areas):

total_area = 0

for area in areas:

(continues on next page)

96 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

total_area += area
return total_area

def main():
areas = []
for i in range(10):
areas.append(calculate_area(i, i))
result = sum_reduction(areas)
result = compss_wait_on(result)
print ("Result: %d" % result)

if __name__ == "__main__":
main()
Caution: The task decorated with @reduction can have multiple parameters, but ONLY ONE

COLLECTION_IN parameter, which will be splitted into chunks to perform the reduction.

Container decorator

The @container (or @Container) decorator shall be used to define that a task is going to be executed within a
container (Code 87).

Code 87: Container task example

from pycompss.api.compss import container
from pycompss.api.task import task

from pycompss.api.parameter import *

from pycompss.api.api import compss_wait_on

Qcontainer (engine="DOCKER",
image="compss/compss")

Otask(returns=1, num=IN, in_str=IN, fin=FILE_IN)
def container_fun(num, in_str, fin):

Sample task body:

with open(fin, "r") as fd:

num_lines = len(fd.readlines())
str_len = len(in_str)
result = num * str_len * num_lines

You can tmport and use libraries available in the container

return result
if __name__=='__main__"':
result = container_fun(5, "hello", "dataset.txt")
result = compss_wait_on(result)
print("result: %s" 7 result)

The container fun task will be executed within the container defined in the @container decorator using the docker
engine with the compss/compss image. This task is pure python and you can import and use any library available
in the container

This feature allows to use specific containers for tasks where the library dependencies are met.

4.2. Python Binding 97

COMPSs Documentation, 3.1

Tip: Singularity is also supported, and can be selected by setting the engine to SINGULARITY:

Ocontainer (engine=SINGULARITY)

In addition, the @container decorator can be placed on top of the @binary, @ompss or @mpi decorators. Code 88
shows how to execute the same example described in the Binary decorator section, but within the compss/compss
container using docker. This will execute the binary/ompss/mpi binary within the container.

Code 88: Container binary task example

from pycompss.api.compss import container
from pycompss.api.task import task

from pycompss.api.binary import binary
from pycompss.api.parameter import *

Q@container (engine="DOCKER",

image="compss/compss")
@binary(binary="grep", working_dir=".")
Otask(infile={Type:FILE_IN_STDIN}, result={Type:FILE_OUT_STDOUT})
def grepper():

pass
if __name__=='__main__"':
infile = "infile.txt"

outfile = "outfile.txt"
grepper ("Hi", infile, outfile)

Software decorator

The @software decorator is useful in order to move definitions of several PyCOMPSs decorators to a JSON file.
It allows the users to ‘define’ their decorator definitions from an external file, which can be generated by another
resource. Thus, the only supported argument is the ‘config file’ that should contain the path to the JSON
configuration file. Following example shows a basic usage of the @software decorator:

Code 89: Software decorator definition example.

from pycompss.api.task import task
from pycompss.api.software import software

Osoftware(config_file="example.json")
Otask(returns=1)
def example():

return "hola"

Configuration files can contain different key-values depending on the user’s needs. Details of the configuration of
the software execution can be defined in the value of the “execution” key. There the user can define the “type” of
the execution and other necessary configuration parameters the software requires. Moreover, parameters of the
PyCOMPSs @task can be added in the “parameters”.

For example, If we wanted to move the @task@ definition from the example above, inside the software the code
and config file it would look like as follows:

Code 90: Example: task definition is inside the config file.

from pycompss.api.task import task
from pycompss.api.software import software

(continues on next page)

98 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

O@software(config_file="example. json")
def example():
return "hola"

Code 91: Task definition inside a software config file.

{
"execution" : {
"type":"task"
},
"parameters" : {
"returns" : 1
}
}

If the user wants to define an MPI task, then “mpi” value should be set for the “type” key. Moreover, arguments
of PyCOMPSs’ @mpi decorator can be added. A basic configuration file for an MPI task would look like in the

example below:

Code 92: JSON configuration file of an MPI definition.

{

"execution" : {
"type":"mpi",
"runner": "mpirun",
"binary":"date",
"working_dir": "/tmp"
1,

"parameters" : {
"returns" : 1

X

}

As we see “runner”, “processes”, and “binary” are the regular parameters of @mpi decorator, and are added as part
of the execution configuration. However, parameters of the @task definition is are in the “parameters’ key.

If we wanted to combine @constraint and @mpi decorators together, the JSON file would have been extended:

Code 93: JSON configuration file of an MPI definition.

{
"execution": {
"type":"mpi",
"runner":"mpirun",
"processes": 2,
"binary":"~/app_mpi.bin",
"args": "-d {{a}} {{pv}}"
1,
"parameters" : {
"returns" : 1
1,
"constraints":{
"computing_units": 2
}
}

It’s also possible to add @prolog and @epilog definitions in the configuration files:

4.2. Python Binding 99

COMPSs Documentation, 3.1

Code 94: Prolog and Epilog definitions in configuration files.

"execution": {
Il-typell B llmpill ,
"runner":"mpirun",
"processes": 2,
"binary":"app_mpi.bin",

"args": ll_d {{a}} {{b}}ll

1,

"parameters" : {
"returns" : 1

},

"constraints":{
"computing_units": 2

3,
"prolog":{
"binary":"echo",
"args":"greetings from prolog."
1,
"epilog":{
"binary":"echo",
"args":"execution finished."
s

Next table provides more detailed information about JSON configuration files:

Key Description

execu- (Mandatory) Contains all the software execution details such as “type” and
tion arguments of the type’s decorator.

execu- (Mandatory) Type of the software invocation. Supported values are ‘task’,

tion.type ‘workflow’, ‘mpi’, ‘binary’, ‘mpmd _mpi’, ‘multinode’, ‘http’, and ‘compss’.
param- | A dictionary containing parameters regarding the “@Qtask” definition.

eters
prolog Replaces the @prolog definition and expects @prolog parameters in a dictio-
nary.

epilog Replaces the @epilog definition and expects @Qepilog parameters in a dictionary.
con- Replaces the @constraint definition and expects Qconstraint parameters in a
straints | dictionary.

con- Replaces the @container definition and expects Qcontainer parameters in a
tainer dictionary.

Please check Other task types summary for the full list of the parameters for each decorator.

100

Chapter 4. Application development

COMPSs Documentation, 3.1

Julia decorator

The Q@Qjulia (or @Julia) decorator shall be used to define that a task is going to invoke a Julia executable, which
can be parallelized with Julia Parallel ClusterManagers described in the Julia documentation.

In this context, the @task decorator parameters will be used as the julia invocation parameters (following their
order in the function definition). Since the invocation parameters can be of different nature, information on their
type can be provided through the @task decorator.

Code 95 shows the most simple julia task definition without constraints and without parameters.

Code 95: Julia task example

from pycompss.api.task import task
from pycompss.api.julia import julia

Q@julia(script="my_julia_app.jl")
Q@task()
def julia_func():

pass

Code 96: my julia_app.jl code

println("Hello world")

The invocation of the julia_ func task would be equivalent to:

$ julia my_julia_app.jl
Hello world

The @julia decorator supports the working_dir parameter to define the working directory for the execution of
the defined julia script.

Code 97 shows a more complex julia invocation, with parameters (z and y) and a file (that captures the standard

output stream during the mandelbrot.jl execution) as parameters:

Code 97: Julia task example using mandelbrot.jl application (ju-
lia_ decorator_test.py)

from pycompss.api.task import task
from pycompss.api.julia import julia
from pycompss.api.parameter import *

@julia(script="mandelbrot.jl", working_dir=".")
Otask(result={Type:FILE_OUT_STDOUT})
def julia_mandelbrot(x, y, result):

pass
This task definition ts equivalent to the following, which s more verbose:
#
@julta(script="mandelbrot.jl", working_dir=".")
@task(result={Type:FILE_OUT, StdI0Stream:STDOUT})
def jultia_mandelbrot(z, y, result):
pass
if __name__=='__main__':

outfile = "fractal.txt"
julia_mandelbrot(-0.05, 0.0315, outfile)

4.2. Python Binding 101

https://julialang.org/
https://github.com/JuliaParallel/ClusterManagers.jl
https://docs.julialang.org/en/v1/manual/distributed-computing/

COMPSs Documentation, 3.1

Code 98: Julia Mandelbrot implementation (mandelbrot.jl)

function mandelbrot(a)

z =0
for i=1:50
z =272 + a
end
return z

Y = parse(Float32, ARGS[1])
X = parse(Float32, ARGS[2])

for y=1.0:Y:-1.0
for x=-2.0:X:0.5
abs (mandelbrot (complex(x, y))) < 2 7 print("*") : print(" ")
end
println()
end

Taken from: https://rosettacode.org/wikt/Mandelbrot_set#Julia
Added X and Y command line parse.

The invocation of the julia _mandelbrot task would be equivalent to:

$ # julia mandelbrot.jl z y > result
$ julia mandelbrot.jl -0.05, 0.0315 > fractal.txt

And the final result of fractal.txt after executing the is:

$ runcompss julia_decorator_test.py

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values

[(930) API] - Starting COMPSs Runtime v3.0.rc2210 (build 20221014-1030.
—reba7fbb482a79b596e249b2c3b6b17509a05652a)
[(5300) API] - Execution Finished

$ cat fractal.txt

*x
*ok koK kK
kokok ok ok k
KoKk Kok k
kokokkokkkk Kk *
* k% ok ok ok ok ok 3 ok 3 ok ok ok koK kK
ok ok ok ok ok Kok ok ok koK ok Kok ok kokkokkk koK

(continues on next page)

102 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

sk ok ok ok ok 3 ok 3 ok 3 ok ok ok ok ok ok ok 3k ok 3 ok ok ok koK kK
sk ok ok ok ok ok ok ok 3 ok 3 ok 3k ok ok ok ok 3 ok 3 ok 3 ok 3k ok ok ok ok K
K ok 3 ok 3k ok ok ok ok K ok 3 ok 3 ok 3 ok 3k ok 3k ok 3k ok ok ok ok ok ok K
sk sk ok sk ok ok ok ok ok o ok ok ok ok ok ok ok ok sk ok sk ok o ok sk ok ok ok ok ok sk okok ok
* sk ok ok sk ok ok o ok o ok sk ok ok ok ok Kok ook o ok o ok ok ok ok ok ok ok ok
k% kokkokk k sk ok ok ok ok ok ok o ok 3 ok ok ok ok ok ok K ok s ok 3 ok 3 ok ok ok ok ok ok ok ok K
sk ok ok ok 3 ok ok K sk sk ok sk ok ok 3 ok 3 ok 3 ok 3k ok sk ok ok ok ok 3 ok 3 ok 3 ok 3k ok 3k ok sk K ok ok K
ook ok ok ok oKk Kok ok Kok ok ok 3k oK ok ok 3 ok 3 ok 3k ok 3k ok 3k ok ok K ok 3 ok 3 ok 3k ok 3k ok 3k ok ok ok ok K
sk ok ok sk sk ok ok sk ok ok sk ok ok sk ok ok s ok ok sk ok ok sk ok ok s ok ok sk ok ok ok ok ok sk ok ok sk ok ok ok s ok ok sk ok ok ok
sk sk ok sk ok ok ok sk ok ok ok ok K ok ok ok sk ok ok ok ok ok sk ok ok sk ok s ok o ok s ok ok ok ok ok ok ok ok ook ook o ok ok ok ok
*x sk skokokok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok s ok o ok 3 ok ok ok sk ok ok K ok o ok 3 ok ok ok ok ok sk ok ok ok sk ok K
sk sk ok sk ok 3 ok 3 ok o ok 3k ok ok ok ok 3 ok 3 ok 3 ok 3 oK 3k ok sk ok ok K ok 3 ok 3 ok 3 ok 3k ok 3k ok ok ok ok ok ok 3k ok K ok K
K ok 3 ok 3k ok ok K ok K ok 3 ok 3 oK 3 ok 3k oK ok K ok 3 ok 3 ok 3 ok 3k ok 3k ok ok K ok 3 ok 3 ok 3k ok 3k ok 3k ok ok ok ok K
oKk ok koK ok Kok ok Kok ok ok sk oK ok ok ok 3 ok 3 ok 3 ok 3k oK 3k ok 3k K ok 3 ok 3 ok 3k ok 3k ok 3k ok ok ok ok K
skokok ok ook ok ok ok ok sk sk ok sk ok ok ok ok ok o ok sk ok ok ok sk ok ok sk ok ook o ok sk ok ok ok ok ok ok Kok ok
k% kokkokk K sk ok ok sk ok ook o ok 3 ok ok ok ok ok ok Kok ook s ok o ok ok ok ok ok ok ok ok K
* ok ok ok ok ok o ok 3 ok o ok ok ok ok K ok s ok 3 ok 3 ok ok ok ok ok ok ok K
sk sk ok sk ok ok 3 ok 3 ok 3k ok 3k ok sk ok ok 3k ok 3 ok 3 ok 3 ok 3k ok 3k ok sk ok ok ok K
K ok 3 ok 3k ok ok ok ok K ok 3 ok 3 ok 3 ok 3k ok 3k ok 3k ok ok ok ok ok ok K
ook ok ok ok ok ok ook o ok ok ok sk ok ok sk ok ok ook ook ok ok ok ok ok
sk sk ok sk ok o ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K
skokok ok ok Kok ok okokkok ok ok kokkokkk kkok
* k% ok ok ok ok ok ok 3 ok ok koK kK
kokokkokkkk Kk *
*okokok kK
kokok ok ok k
KoKk Kok k
*x

Please note that the keyword parameter is a string, and it is respected as is in the invocation call. Another way
of passing task parameters to julia execution command is to use “args™ parameter in the julia definition. In this
case, task parameters should be defined between curly braces and the full string with parameter replacements will
be added to the command. In the following example, value of ‘param_ 1’ is added to the execution command after
-d’ arg:

Code 99: Julia task example with args

from pycompss.api.task import task
from pycompss.api.julia import julia
from pycompss.api.parameter import *

Qjulia(script="my_julia_app.jl", args= "-d {{param_1}}")
Otask()
def julia_task(param_1):

pass

main__"':

if __name__=='

julia_task("hello")

The invocation of the julia_ task task would be equivalent to:

$ # julia my_julia_app.jl -d param_1
$ julia -d hello

Thus, PyCOMPSs can also deal with prefixes for the given parameters:

4.2. Python Binding 103

COMPSs Documentation, 3.1

Code 100: Julia task example 4

from pycompss.api.task import task
from pycompss.api.julia import julia
from pycompss.api.parameter import *

Qjulia(script="my_julia_app.jl")
Otask(hide={Type:FILE_IN, Prefix:"--hide="}, sort={Prefix:"--sort="})
def julia_task(flag, hide, sort):

pass
if __name__=='__main__"':
flag = '-1'
hideFile = "fileToHide.txt"
sort = "time"

julia_task(flag, hideFile, sort)

The invocation of the julia_task task would be equivalent to:

$ # julia my_julia_app.jl -1 --hide=hide --sort=sort
$ julia my_julia_app.jl -1 --hide=fileToHide.txt --sort=time

This particular case is intended to show all the power of the @julia decorator in conjuntion with the @task decorator.
Please note that although the hide parameter is used as a prefix for the julia invocation, the file ToHide.txt would
also be transfered to the worker (if necessary) since its type is defined as FILE IN. This feature enables to build

more complex julia invocations.

In addition, the @julia decorator also supports the fail_by_exit_value parameter to define the failure of the
task by the exit value of the julia (Code 101). It accepts a boolean (True to consider the task failed if the exit
value is not 0, or False to ignore the failure by the exit value (default)), or a string to determine the environment
variable that defines the fail by exit value (as boolean). The default behaviour (fail_by_exit_value=False)
allows users to receive the exit value of the julia as the task return value, and take the necessary decissions based

on this value.

Code 101: Julia task example with fail_by_exit_value

Qjulia(script="my_julia_app.jl", fail_by_exit_value=True)
Otask()
def julia_task():

pass

In addition, to all previous possibilities, a @julia task can also be defined with constraints. To this end, the

@constraint decorator has to be provided on top of the @julia decorator:

Code 102: Julia task example using mandelbrot.jl application (ju-

lia_ decorator_test.py) with constraint

from pycompss.api.task import task

from pycompss.api.julia import julia

from pycompss.api.parameter import *

from pycompss.api.constraint import constraint

Qconstraint (computing_units="2")
Qjulia(script="mandelbrot.jl", working dir=".")
Otask(result={Type:FILE_OUT_STDOUT})
def julia_mandelbrot(x, y, result):

pass

(continues on next page)

104 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

Thts task definition is equivalent to the following, which is more verbose:

#
#
@constraint (computing_units="2")

@julia(script="mandelbrot.jl", working_dir=".")

Otask(result={Type:FILE_OUT, StdIOStream:STDOUT})
def julia_mandelbrot(z, y, result):

pass

if __name__=='__main__"':

outfile = "fractal.txt"
julia_mandelbrot(-0.05, 0.0315, outfile)

Code 102 extends the Code 97 with the @constraint decorator in order to define that the julia mandelbrot task re-
quires 2 computing nodes (cores). In this scenario, the julia script (mandelbrot.jl) needs to implement a mechanism
to exploit multiple cores.

Finally, the PyCOMPSs integration with Julia also enables to use multiple computing nodes, enabling to have two
levels of parallelism (PyCOMPSs and Julia Parallel ClusterManagers) However, this feature is limited to SLURM
enabled clusters (i.e. supercomputers with SLURM queuing system).

The following code snippet (Code 103) shows the definition of a Julia task that requires to be executed using 2
nodes and with 2 processes on each node (4 total processes). The julia script executed as task (Code 104) used the
Julia Parallel ClusterManagers library to spawn the processes in the nodes where COMPSs runtime has enabled,
and on each node and process prints its identifier and node name.

Code 103: Julia task example using multiple nodes

from pycompss.api.task import task

from pycompss.api.julia import julia

from pycompss.api.parameter import *

from pycompss.api.constraint import constraint
from pycompss.api.multinode import multinode

OGmultinode (computing_nodes="2")

Qconstraint (computing_units="2")

Qjulia(script="distributed_app.jl")

Otask(result={Type:FILE_OUT_STDOUT})

def julia_distributed_app(result):
pass

Thts task definition can also be defined as follows:

@constraint (computing_units="2")
Ojulia(script="distributed_app.jl", computing_nodes="2")
@task(result={Type:FILE_OUT_STDOUT})
def julia_distributed_app(result):

pass

HOR R R R R W

if __name__=='__main__

outfile = "fractal.txt"
julia_mandelbrot(-0.05, 0.0315, outfile)

Code 104: Julia application using distributed parallelism (dis-
tributed _app.jl)

using Distributed, ClusterManagers
addprocs_slurm(parse(Int, ENV["SLURM_NTASKS"]))

(continues on next page)

4.2. Python Binding 105

https://github.com/JuliaParallel/ClusterManagers.jl
https://github.com/JuliaParallel/ClusterManagers.jl

COMPSs Documentation, 3.1

(continued from previous page)

Oeverywhere using Distributed
Qeverywhere println(myid())
Qeverywhere println(gethostname())

println("Hello world")

Tip: If the julia script sets the number or processes based on the SLURM _NTASKS environment variable allows
to change the number of total processes and nodes without modifying the julia script. This enables to adapt
the julia script parallelism in terms of the computing units and computing nodes defined in the @constraint and
@multinode decorators accordingly.

Other task types summary

Next tables summarizes the parameters of these decorators. Please note that ‘working dir’ and ‘args’ ae the only
decorator properties that can contain task parameters defined in curly braces.

e Binary decorator (Qbinary)

Parame- Description

ter

binary (Mandatory) String defining the full path of the binary that must be executed.

work- Full path of the binary working directory inside the COMPSs Worker.

ing dir

args Args string to be added to end of the execution command of the binary. It can contain
python task parameters defined in curly braces.

e OmpSs decorator (Qompss)

Parameter Description
binary (Mandatory) String defining the full path of the binary that must be executed.
working dir | Full path of the binary working directory inside the COMPSs Worker.

e MPI decorator (Qmpi)

Parameter Description

binary String defining the full path of the binary that must be executed. Empty indicates
python MPI code.

working dir | Full path of the binary working directory inside the COMPSs Worker.

runner (Mandatory) String defining the MPI runner command.

processes Integer defining the number of MPI processes spawned by the task. (Default 1)
processes - | Integer defining the number of co-allocated MPI processses per node. The
per_node_ processes value should be multiple of this value

args Args string to be added to end of the execution command of the binary. It can

contain python task parameters defined in curly braces.

e MPMD MPI decorator (@mpmd _mpi)

106 Chapter 4. Application development

COMPSs Documentation, 3.1

Parameter Description

runner (Mandatory) String defining the MPMD MPI runner command.

working dir Defines mpi job’s working directory.

processes - Integer defining the number of co-allocated MPI processses per node. The

per node processes value should be multiple of this value

fail by - If set to ‘False’, and returns value of the ‘task’ definition is ‘int’, exit code of the

exit value MPI command will be returned.

programs List of single MPI program dictionaries where program specific parameters
(binary, processes, args) are defined.

e 1/0 decorator (Qio)
e COMPSs decorator (Qcompss)

Parameter Description

runcompss (Mandatory) String defining the full path of the runcompss binary that must be
executed.

flags String defining the flags needed for the runcompss execution.

app _name (Mandatory) String defining the application that must be executed.

comput- Integer defining the number of computing nodes reserved for the COMPSs execution

ing nodes (only a single node is reserved by default).

e Multinode decorator (@multinode)

Parameter Description
comput- Integer defining the number of computing nodes reserved for the task execution
ing nodes (only a single node is reserved by default).

e HTTP decorator (Qhttp)

Parameter Description

service - | (Mandatory) Name of the HTTP Service that included at least one HTTP resource in
name the resources file.

resource (Mandatory) URL extension to be concatenated with HTTP resource’s base URL.

request (Mandatory) Type of the HTTP request (GET, POST, etc.).

produces | In case of JSON responses, produces string defines where the return value(s) is (are)
stored in the retrieved JSON string.

payload Payload string of POST requests if any.

pay- Payload type of POST requests (e.g: ‘application/json’).

load -
type
updates To define INOUT parameter key to be updated with a value from HTTP response.

Reduction decorator (Qreduction)

Parameter Description
chunk size | Size of data fragments to be given as input parameter to the reduction function.

Container decorator (@Qcontainer)

Parameter | Description
engine Container engine to use (e.g. DOCKER or SINGULARITY).
image Container image to be deployed and used for the task execution.

Software decorator (@software)

Parameter Description
config file | Path to the JSON configuration file.

Julia decorator (@Qjulia)

4.2. Python Binding 107

COMPSs Documentation, 3.1

Parameter Description

executor String defining the julia binary executor (default: julia).

script (Mandatory) String defining the full path of the Julia script that must be executed.

fail by - If set to ‘False’, and returns value of the ‘task’ definition is ‘int’, exit code of the

exit value Julia script execution will be returned.

working - Full path of the julia script working directory inside the COMPSs Worker.

dir

comput- Integer defining the number of computing nodes reserved for the task execution

ing nodes (default: “1” - overrides @rmultinode decorator).

args Args string to be added to end of the execution command of the Julia script. It can
contain python task parameters defined in curly braces.

In addition to the parameters that can be used within the @task decorator, Table 9 summarizes the StdIOStream
parameter that can be used within the @task decorator for the function parameters when using the @binary,
@ompss and @mpi decorators. In particular, the StdIOStream parameter is used to indicate that a parameter is
going to be considered as a FILE but as a stream (e.g. >, < and 2 > in bash) for the @binary, @Qompss and @mpi

calls.

Table 9: Supported StdIOStreams for the @binary, Qompss and
@mpi decorators

Moreover, there are some shorcuts

Parameter Description
(default: empty) | Not a stream.
STDIN Standard input.
STDOUT Standard output.
STDERR Standard error.

that can be used for files type definition as parameters within the @task

decorator (Table 10). It is not necessary to indicate the Direction nor the StdIOStream since it may be already be

indicated with the shorcut.

108

Chapter 4. Application development

COMPSs Documentation, 3.1

Table 10: File parameters definition shortcuts

Alias Description

COLLECTION(_ IN) Type: COLLECTION, Direction: IN

COLLECTION IN DELETE Type: COLLECTION, Direction: IN_DELETE
COLLECTION INOUT Type: COLLECTION, Direction: INOUT

COLLECTION OUT Type: COLLECTION, Direction: OUT

DICTIONARY(_IN) Type: DICTIONARY, Direction: IN

DICTIONARY IN DELETE Type: DICTIONARY, Direction: IN_DELETE
DICTIONARY INOUT Type: DICTIONARY, Direction: INOUT

COLLECTION FILE(IN) Type: COLLECTION (File), Direction: IN

COLLECTION FILE INOUT Type: COLLECTION (File), Direction: INOUT
COLLECTION_ FILE OUT Type: COLLECTION (File), Direction: OUT

FILE(_ IN) STDIN Type: File, Direction: IN, StdIOStream: STDIN

FILE(IN) STDOUT Type: File, Direction: IN, StdIOStream: STDOUT

FILE(_IN) STDERR Type: File, Direction: IN, StdIOStream: STDERR

FILE OUT_STDIN Type: File, Direction: OUT, StdIOStream: STDIN

FILE OUT_ STDOUT Type: File, Direction: OUT, StdIOStream: STDOUT

FILE OUT_ STDERR Type: File, Direction: OUT, StdIOStream: STDERR

FILE INOUT STDIN Type: File, Direction: INOUT, StdIOStream: STDIN

FILE INOUT STDOUT Type: File, Direction: INOUT, StdIOStream: STDOUT

FILE INOUT STDERR Type: File, Direction: INOUT, StdIOStream: STDERR

FILE CONCURRENT Type: File, Direction: CONCURRENT

FILE CONCURRENT STDIN Type: File, Direction: CONCURRENT, StdIOStream: STDIN
FILE CONCURRENT STDOUT | Type: File, Direction: CONCURRENT, StdIOStream: STDOUT
FILE CONCURRENT STDERR | Type: File, Direction: CONCURRENT, StdIOStream: STDERR
FILE COMMUTATIVE Type: File, Direction: COMMUTATIVE

FILE COMMUTATIVE STDIN Type: File, Direction: COMMUTATIVE, StdIOStream: STDIN
FILE COMMUTATIVE STD- Type: File, Direction: COMMUTATIVE, StdIOStream: STDOUT
ourT

FILE COMMUTATIVE - Type: File, Direction: COMMUTATIVE, StdlOStream: STDERR
STDERR

These parameter keys, as well as the shortcuts, can be imported from the PyCOMPSs library:

from pycompss.api.parameter import *

Task Constraints

It is possible to define constraints for each task. To this end, the @constraint (or @QConstraint) decorator followed
by the desired constraints needs to be placed ON TOP of the @Qtask decorator (Code 105).

Important: Please note the the order of @constraint and @task decorators is important.

Code 105: Constrained task example

from pycompss.api.task import task
from pycompss.api.constraint import constraint
from pycompss.api.parameter import INOUT

Qconstraint (computing_units="4")
Otask (c=INQUT)
def func(a, b, ¢):

(continues on next page)

4.2. Python Binding 109

COMPSs Documentation, 3.1

(continued from previous page)

c+t=a*b

This decorator enables the user to set the particular constraints for each task, such as the amount of Cores required
explicitly. Alternatively, it is also possible to indicate that the value of a constraint is specified in a environment
variable (Code 106).

For example:

Code 106: Constrained task with environment variable example

from pycompss.api.task import task
from pycompss.api.constraint import constraint
from pycompss.api.parameter import INOUT

Oconstraint (computing_units="4",
app_software="numpy,scipy,gnuplot",
memory_size="$MIN_MEM_REQ")

Otask (c=INOUT)

def func(a, b, c):

c+=ax*b

Or another example requesting a CPU core and a GPU (Code 107).

Code 107: CPU and GPU constrained task example

from pycompss.api.task import task
from pycompss.api.constraint import constraint

Qconstraint (processors=[{'processorType':'CPU', 'computingUnits':'1'},
{'processorType':'GPU', 'computingUnits':'1'}])

Otask(returns=1)

def func(a, b, c):

return result

When the task requests a GPU, COMPSs provides the information about the assigned GPU through the
COMPSS BINDED GPUS, CUDA_VISIBLE DEVICES and GPU_DEVICE ORDINAL environment vari-
ables. This information can be gathered from the task code in order to use the GPU.

Please, take into account that in order to respect the constraints, the peculiarities of the infrastructure must be
defined in the resources.zml file.

110 Chapter 4. Application development

COMPSs Documentation, 3.1

Supported constraints

A full description of the supported constraints can be found in Table 14.

Special constraints

There is a special constraint when considering the COMPSs agents deployment (Agents Deployments) to
specify that the task MUST be executed in the node that received the task. This constraint is indicated in the
@constraint decorator with the is_local argument equal a boolean (True or False) (Code 108) in addition to
other constraints.

Code 108: is_local task example

from pycompss.api.task import task
from pycompss.api.constraint import constraint

@constraint (is_local=True)
@task (c=INOUT)
def func(a, b, c):

c +t=a*b

Important: The is_local constraint has NO effect with the default COMPSs deployment (master-workers)
(Master-Worker Deployments).

Multiple Task Implementations

As in Java COMPSs applications, it is possible to define multiple implementations for each task. In particular, a
programmer can define a task for a particular purpose, and multiple implementations for that task with the same
objective, but with different constraints (e.g. specific libraries, hardware, etc). To this end, the @implement (or
@Implement) decorator followed with the specific implementations constraints (with the @constraint decorator, see
Section [subsubsec:constraints|) needs to be placed ON TOP of the @task decorator. Although the user only calls
the task that is not decorated with the @implement decorator, when the application is executed in a heterogeneous
distributed environment, the runtime will take into account the constraints on each implementation and will try
to invoke the implementation that fulfills the constraints within each resource, keeping this management invisible
to the user (Code 109).

Code 109: Multiple task implementations example

from pycompss.api.implement import implement

@implement (source_class="sourcemodule", method="main_func")
Qconstraint (app_software="numpy")
Otask(returns=list)
def myfunctionWithNumpy(listl, list2):
Operate with the lists using numpy
return resultlList

@task(returns=1ist)

def main_func(listl, list2):
Operate with the lists using built-int functions
return resultList

Please, note that if the implementation is used to define a binary, OmpSs, MPI, COMPSs, multinode or reduction
task invocation (see Other task types), the @implement decorator must be always on top of the decorators stack,

4.2. Python Binding 111

COMPSs Documentation, 3.1

followed by the @constraint decorator, then the @binary/@ompss/@Qmpi/@compss/@multinode decorator, and
finally, the @task decorator in the lowest level.

Prolog & Epilog

The @prolog and @epilog decorators are definitions of binaries to be executed before / after ~task™ execution on
the worker. All kind of PyCOMPSs tasks can have a @prolog or an @epilog, or both at the same time. A basic
usage is shown in the example below:

Important: Please note that @prolog and @epilog definitions should be on top of @task decorators.

Code 110: Prolog and Epilog definitions.

from pycompss.api.epilog import epilog
from pycompss.api.prolog import prolog
from pycompss.api.task import task

Oprolog(binary="start_some_service.bin")
@task()
def basic():

return 1
Qepilog(binary="shut_down.bin")

Otask()
def basic():

return 1

Both decorators have the same syntax and have 3 parameters: ~binary" is the only mandatory parameter where
“args”® and “fail_by_exit_value® are optional. ~args™ describe the command line arguments of the binary.
Users can also pass the task parameters as arguments. In this case, the task parameter should be surrounded by
double curly braces (“{{” and “}}”) in the ‘args’ string. These parameters can be results of previous tasks and
PyCOMPSs will handle data dependencies between tasks:

Important: Task parameters used in ‘args’ strings can be type of primitive types such as int, float, string, and
boolean.

Code 111: Task parameter in Prolog definition.

from pycompss.api.prolog import prolog
from pycompss.api.task import task

@prolog(binary="mkdir", args="{{param_1}}")
Otask()
def task_1(param_1):

return 1
call to the task function
task_1("/home/dir_to_be_created_before_task_exec")

“fail_by_exit_value” is used to indicate the behaviour when the prolog or epilog returns an exit value different
than zero. Users can set the “fail_by_exit_value” to True, if they want to consider the exit value as a task

112 Chapter 4. Application development

COMPSs Documentation, 3.1

failure. If set to False, failure of the prolog will be ignored and task execution will start as usual. The same rule
applies for the “epilog™ as well. Default value of ‘fail by exit value’ is True for Prolog and False for Epilog:

Code 112: Prolog & Epilog with ‘fail by exit value’.

from pycompss.api.epilog import epilog
from pycompss.api.prolog import prolog
from pycompss.api.task import task

@prolog(binary="mkdir", args="-p {{sandbox_path}}", fail_by_exit_value=True)
Q@epilog(binary="rm", args="-r {{sandbox_path}}", fail_by_exit_value=False)
Q@task()

def task_2(sandbox_path):

return 1
call to the task function
task_2("/tmp/my_task_sandbox")

In the example above, if creation of the ‘sandbox path’ fails, the task execution won’t start at all and task will be
considered as failed. However, if removing the sandbox is not crucial and can be ignored, ~fail_by_exit_value”
in the Epilog can be set to False.

Data Transformation

The @data_ transformation (or just @dt) decorator is used for the execution of a data transformation function
that should be applied on a given ~PyCOMPSs task™ parameter. It means, by specifying the parameter name and a
python function, users can assure that the parameter will go through transformation process by the given function.
Then the result of the data transformation function will be used in the task instead of the initial value of the
parameter.

Data transformation decorator has a simple order for the definition. The first argument of the decorator is a string
name of the parameter we want to transform. The second argument is the data transformation function (NOT as
a string, but actual reference) that expects at least one input which will the transformation will be applied to. If
the transformation function needs more parameters, they can be added to the @dt definition as “kwargs™.

Code 113: Arguments list of the data transformation decorator.

@dt ("<parameter_name>", "<dt_function>", "<kwargs_of_dt_function>")
@task()
def task_func(...):

Important: Please note that data transformation definitions should be on top of the @task (or @software)
decorator.

Adding data transformation on top of the ~@task™ decorator allows the PyCOMPSs Runtime generate an inter-
mediate task. This task method applies the given DT to the given input and the output is sent to the original
task as the input. Following code snippet is an example of basic usage of the @dt decorator:

Code 114: An example of data transformation decorator.

from pycompss.api.data_transformation import dt
from pycompss.api.task import task
from pycompss.api.api import compss_wait_on

(continues on next page)

4.2. Python Binding 113

COMPSs Documentation, 3.1

(continued from previous page)

def append_dt(A):
A.append("from_dt")
return A

@dt("A", append_dt)

Qtask()

def task_func(A):
A.append("from_task_itself")
return A

def main():
A = ["initial_value"]
A = compss_wait_on(task_func(A))
print (A)

When the “main function called, a new list called “A~ will be initialized with one element and will be sent to a
PyCOMPSs task called ~task_func™. Then, a call to “task func” method results in generation of 2 tasks by the
PyCOMPSs Runtime. The first task accepts the initial list and adds “from dt” element to it. Then the modified
list is passed to the “task func” defined by the user and “from task itself” is added to the list. As a result, the
output of code above is a list with 3 elements including those were added by the data transformation and the
“task func” tasks.

If the user wants to use a workflow as a data transformation function and thus avoid the intermediate task
creation, PyCOMPSs provides the ~is_workflow™ argument to do so (by default False). This gives the flexibility
of importing workflow from different libraries.

It is also possible to define multiple data transformation functions for the same parameter, as well as for the
multiple parameters from the same task. In both cases each data transformation with “is_workflow=False” will
take place in a different task:

Code 115: Example: multiple data transformations for a single
task method.

from pycompss.api.data_transformation import dt
from pycompss.api.task import task
from pycompss.api.api import compss_wait_on

@task()

def bb(A):
A . append("from_bb")
return A

@task()

def aa(A):
A .append("from_aa")
return A

calls 2 O@task functions for a given input
def workflow_dt(A):
return aa(bb(A))

regular python task that appends a given value to the input list
def appender_w_param(a_list, item):

a_list.append(item)

return a_list

(continues on next page)

114 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

@dt("A", appender_w_param, item="dt_no_workflow")
@dt("A", workflow_dt, is_workflow=True)
@dt("B", appender_w_param, item="dt_no_workflow")
@dt("B", workflow_dt, is_workflow=True)
@task()
def task_func(A, B):

A . append("task itself")

B.append("task itself")

return A, B

In the example above, input parameter A is meant to be modified 2 times sequentially: first, “appender w_param”
function is called within a separate task and its output is sent to the next data transformation which is a workflow.
The “workflow dt” function consists of 2 PyCOMPSs tasks executed one after another. Only applying all these
transformations to the initial value of A, it’s passed to the “task func” as the input. The same scenario applies
for the parameter B.

PyCOMPSs API also provides Data Transformation Object class which gives the flexibility of the data transforma-
tion definitions. Any task function can be decorated with an empty @dt and simply by passing DTO(s) as a task
parameter the user can achieve the same behaviour. Same as the decorator itself, DTO accepts the arguments in

the same order (“<parameter name>", “<dt_function>", “<kwargs_of dt_function>"). A list of DTO objects
is also accepted for the same or various parameters:

Code 116: Data Transformation Object example.

from pycompss.api.data_transformation import dto
from pycompss.api.data_transformation import dt
from pycompss.api.task import task

from pycompss.api.api import compss_wait_on

edt ()

@task()

def dto_basic(A, B):
A . append("from_task")
B.append("from_task")
return A

def appender(a_list):
a_list.append("from_dt")
return a_list

def dto_example(self):
A = ["initial"]
B = ["initial_B"]

create Data Transformation Objects
dt_1 = dto("A", appender)
dt_2 = dto("B", appender, is_workflow=False)

send DT Objects to the task function as input
A = cwo(dto_basic(A, B, dt=[dt_1, dt_2]))

4.2. Python Binding 115

COMPSs Documentation, 3.1

4.2.1.2 API

PyCOMPSs provides an API for data synchronization and other functionalities, such as task group definition and
automatic function parameter synchronization (local decorator).

Synchronization

The main program of the application is a sequential code that contains calls to the selected tasks. In addition,
when synchronizing for task data from the main program, there exist six API functions that can be invoked:

compss_open(file name, mode=’r’) Similar to the Python open() call. It synchronizes for the last version
of file file_name and returns the file descriptor for that synchronized file. It can have an optional parameter
mode, which defaults to ’r’, containing the mode in which the file will be opened (the open modes are
analogous to those of Python open()).

compss_wait on_file(*file name) Synchronizes for the last version of the file/s specified by file_name.
Returns True if success (False otherwise).

compss_wait on_ directory(*directory name) Synchronizes for the last version of the directory/ies spec-
ified by directory name. Returns True if success (False otherwise).

compss_barrier(no_more tasks=False) Performs a explicit synchronization, but does not return any ob-
ject. The use of compss_ barrier() forces to wait for all tasks that have been submitted before the compss_ bar-
rier() is called. When all tasks submitted before the compss_barrier() have finished, the execution continues.
The no_more_ tasks is used to specify if no more tasks are going to be submitted after the compss_ barrier().

compss_barrier group(group name) Performs a explicit synchronization over the tasks that belong to the
group group _name, but does not return any object. The use of compss_barrier group() forces to wait for
all tasks that belong to the given group submitted before the compss barrier group() is called. When all
group tasks submitted before the compss barrier group() have finished, the execution continues. See Task
Groups for more information about task groups.

compss__wait _on(*obj, mode="r" | “rw”) Synchronizes for the last version of object/s specifed by obj and
returns the synchronized object. It can have an optional string parameter mode, which defaults to rw, that
indicates whether the main program will modify the returned object. It is possible to wait on a list of objects.
In this particular case, it will synchronize all future objects contained in the list recursively.

To illustrate the use of the aforementioned API functions, the following example (Code 117) first invokes a task
func that writes a file, which is later synchronized by calling compss _open(). Later in the program, an object of
class MyClass is created and a task method method that modifies the object is invoked on it; the object is then
synchronized with compss_wait_ on, so that it can be used in the main program from that point on.

Then, a loop calls again ten times to func task. Afterwards, the compss_barrier() call performs a synchronization,
and the execution of the main user code will not continue until the ten func tasks have finished. This call does
not retrieve any information.

Code 117: PyCOMPSs Synchronization API functions usage

from pycompss.api.api import compss_open

from pycompss.api.api import compss_wait_on

from pycompss.api.api import compss_wait_on_file

from pycompss.api.api import compss_wait_on_directory
from pycompss.api.api import compss_barrier

if __name__=='__main__"':
my_file = 'file.txt'
func(my_file)

fd = compss_open(my_file)

my_file2 = 'file2.txt'
func(my_file2)
compss_wait_on_file(my_file2)

(continues on next page)

116 Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

my_directory = '/tmp/data’
func_dir(my_directory)
compss_wait_on_directory(my_directory)

my_obj2 = MyClass()
my_obj2.method ()
my_obj2 = compss_wait_on(my_obj2)

for i in range(10):
func(str(i) + my_file)
compss_barrier ()

The corresponding task definition for the example above would be (Code 118):

Code 118: PyCOMPSs Synchronization API usage tasks

Otask (f=FILE_0OUT)
def func(f):

class MyClass(object):

Otask()
def method(self):
self is modified here

Tip: It is possible to synchronize a list of objects. This is particularly useful when the programmer expect to
synchronize more than one elements (using the compss wait_on function) (Code 119). This feature also works
with dictionaries, where the value of each entry is synchronized. In addition, if the structure synchronized is a
combination of lists and dictionaries, the compss _wait_on will look for all objects to be synchronized in the whole
structure.

Code 119: Synchronization of a list of objects

if name__=='__main__":

1 ts a list of objects where some/all of them may be future objects
1=1
for i in range(10):

1.append(ret_func())

1 = compss_wait_on(1l)

Important: In order to make the COMPSs Python binding function correctly, the programmer
should not wuse relative imports in the code. Relative imports can lead to ambiguous code
and they are discouraged in Python, as explained in: http://docs.python.org/2/faq/programming.html#
what-are-the-best-practices-for-using-import-in-a-module

4.2. Python Binding 117

http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module
http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module

COMPSs Documentation, 3.1

Local Decorator

Besides the synchronization API functions, the programmer has also a decorator for automatic function parameters
synchronization at his disposal. The @local decorator can be placed over functions that are not decorated as tasks,
but that may receive results from tasks (Code 120). In this case, the @local decorator synchronizes the necessary
parameters in order to continue with the function execution without the need of using explicitly the compss -
wait_on call for each parameter.

Code 120: @local decorator example

from pycompss.api.task import task

from pycompss.api.api import compss_wait_on
from pycompss.api.parameter import INOUT
from pycompss.api.local import local

Otask (v=INOUT)
def append_three_ones(v):
v += [1, 1, 1]

@local
def scale_vector(v, k):
return [k*x for x in v]

if __name__=='__main__"':

v = [1,2,3]
append_three_ones (v)
v 1s automatically synchronized when calling the scale_vector function.

w = scale_vector(v, 2)

File/Object deletion

PyCOMPSs also provides two functions within its API for object/file deletion. These calls allow the runtime to
clean the infrastructure explicitly, but the deletion of the objects/files will be performed as soon as the objects/files
dependencies are released.

compss_delete file(*file _name) Notifies the runtime to delete a file/s.
compss__delete object(*object) Notifies the runtime to delete all the associated files to a given object/s.

The following example (Code 121) illustrates the use of the aforementioned API functions.

Code 121: PyCOMPSs delete API functions usage

from pycompss.api.api import compss_delete_file
from pycompss.api.api import compss_delete_object

if __name__=='__main_
my_file = 'file.txt'
func(my_file)
compss_delete_file(my_file)

my_obj = MyClass()
my_obj .method ()
compss_delete_object (my_obj)

The corresponding task definition for the example above would be (Code 122):

118 Chapter 4. Application development

COMPSs Documentation,

3.1

Code 122: PyCOMPSs delete API usage tasks

Otask (f=FILE_QOUT)
def func(f):

class MyClass(object):

@task()
def method(self):
self 1s modified here

Task Groups

COMPSs also enables to specify task groups. To this end, COMPSs provides the TaskGroup context (Code 123)
which can be tuned with the group name, and a second parameter (boolean) to perform an implicit barrier for the

whole group. Users can also define task groups within task groups.

TaskGroup(group name, implicit barrier=True) Python context to define a group of tasks. All tasks
submitted within the context will belong to group name context and are sensitive to wait for them while the
rest are being executed. Tasks groups are depicted within a box into the generated task dependency graph.

Code 123: PyCOMPSs Task group definiton

from pycompss.api.task import task

from pycompss.api.api import TaskGroup
from pycompss.api.api import compss_barrier_group

Otask()
def func1():

Otask()
def func2():

def test_taskgroup():
Creation of group

with TaskGroup('Groupl', False):

for i in range(NUM_TASKS):
func1()
func2()

compss_barrier_group('Groupl')

if __name__=='__main__"':

test_taskgroup ()

4.2. Python Binding

119

COMPSs Documentation, 3.1

Other

PyCOMPSs also provides other function within its API to check if a file exists.

compss_file exists(*file_name) Checks if a file or files exist. If it does not exist, the function checks if the
file has been accessed before by calling the runtime.

Code 124 illustrates its usage.

Code 124: PyCOMPSs API file exists usage

from pycompss.api.api import compss_file_exists

__main__"':

'file.txt'

if __name__=='
my_file =

func(my_file)
if compss_file_exists(my_file):
print ("Exists")

else:

print ("Not exists")

The corresponding task definition for the example above would be (Code 125):

Code 125: PyCOMPSs delete API usage tasks

O@task (£=FILE_QUT)

def func(f):

API Summary

Finally, Table 11 summarizes the API functions to be used in the main program of a COMPSs Python application.

Table 11: COMPSs Python API functions

Type API Function Description

Synchroniza- compss_open(file name, Synchronizes for the last version of a file and returns its

tion mode="r") file descriptor.
compss _wait_on_file(*file_- Synchronizes for the last version of the specified file/s.
name)
compss_wait on_direc- Synchronizes for the last version of the specified direc-
tory(*directory name) tory /ies.
compss barrier(no _more - Wait for all tasks submitted before the barrier.
tasks=False)
compss_barrier group(group - Wait for all tasks that belong to group name group sub-
name) mitted before the barrier.
compss_wait__on(*obj, mode="r" | Synchronizes for the last version of an object (or a list of

“rw”) objects) and returns it.
File/Object compss_delete file(*file_name) Notifies the runtime to remove the given file/s.
deletion compss__delete _object(*object) Notifies the runtime to delete the associated file to the
object/s.

Task Groups TaskGroup(group name, im- | Context to define a group of tasks. implicit_ barrier forces
plicit_barrier=True) waiting on context exit.

Other compss_file exists(*file _name) Check if a file or files exist.

120 Chapter 4. Application development

COMPSs Documentation, 3.1

4.2.1.3 Failures and Exceptions

COMPSs is able to deal with failures and exceptions raised during the execution of the applications. In this case,
if a user/python defined exception happens, the user can choose the task behaviour using the on_ failure argument
within the @task decorator.

The possible values are:

‘RETRY’ (Default): The task is executed twice in the same worker and a different worker.
’CANCEL_SUCCESSORS?: All successors of this task are canceled.

*FAIL’: The task failure produces a failure of the whole application.

’IGNORE’: The task failure is ignored and the output parameters are set with empty values.

A part from failures, COMPSs can also manage blocked tasks executions. Users can use the time_out property in
the task definition to indicate the maximum duration of a task. If the task execution takes more seconds than the
specified in the property. The task will be considered failed. This property can be combined with the on_ failure
mechanism.

Code 126: Task failures example

from pycompss.api.task import task

Otask(time_out=60, on_failure='IGNORE')
def foo(v):

Tip: The on_failure behaviour can also be defined with the @on_failure decorator placed over the @task
decorator, which provides more options. For example:

Code 127: Task failures example with Qon_failure decorator

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure
from pycompss.api.parameter import INOUT

from myclass import generate_empty # private function that generates empty object
Qon_failure(management='IGNORE', returns=0, w=generate_empty())

Otask(time_out=60, w=INOUT, returns=int)
def foo(v, w):

This example depicts a task named foo that has two parameters (v (IN) and w (INOUT)) and has a timeout of
60 seconds. If the timeout is reached or an exception is thrown, the task will be considered as failed, and the
management action defined in the @on_failure decorator applied, which in this example is to ignore the failure
and continue. However, when continuing with the execution, the foo task should have produced a return element
and modifies the w parameter. Consequently, the return and w values when the task fails are defined in the @on_-
failure decorator. The return value will be 0 when the task fails, and w will contain the object produced by
generate_empty function.

COMPSs provides an special exception (COMPSsException) that the user can raise when necessary and can be
catched in the main code for user defined behaviour management. Code 128 shows an example of COMPSsEzception
raising. In this case, the group definition is blocking, and waits for all task groups to finish. If a task of the group
raises a COMPSsEzception it will be captured by the runtime. It will react to it by canceling the running and
pending tasks of the group and raising the COMPSsException to enable the execution except clause. Consequenty,
the COMPSsFEzception must be combined with task groups.

In addition, the tasks which belong to the group will be affected by the on_ failure value defined in the @task
decorator.

4.2. Python Binding 121

COMPSs Documentation, 3.1

Code 128: COMPSs Exception with task group example

from pycompss.api.task import task
from pycompss.api.exceptions import COMPSsException
from pycompss.api.api import TaskGroup

Otask()
def foo(v):

if v ==
raise COMPSsException("8 found!")

if __name__=='__main__':
try:
with TaskGroup('exceptionGroupl'):
for i in range(10):
foo(i)

except COMPSsException:

React to the exzception (maybe calling other tasks or with other parameters)

It is possible to use a non-blocking task group for asynchronous behaviour (see Code 129). In this case, the try-
except can be defined later in the code surrounding the compss_barrier_group, enabling to check exception from
the defined groups without retrieving data while other tasks are being executed.

Code 129: Asynchronous COMPSs Exception with task group ex-

ample

from pycompss.api.task import task
from pycompss.api.api import TaskGroup
from pycompss.api.api import compss_barrier_group

Otask()
def fool():

@task()
def foo2():

def test_taskgroup():
Creation of group
for i in range(10):
with TaskGroup('Group' + str(i), False):
for i in range(NUM_TASKS):
fool()
foo2()

for i in range(10):
try:
compss_barrier_group('Group' + str(i))
except COMPSsException:

React to the exception (maybe calling other tasks or with other parameters)

if __name__=='__main__"':

(continues on next page)

122

Chapter 4. Application development

COMPSs Documentation, 3.1

(continued from previous page)

test_taskgroup ()

Important: To ensure the COMPSs Exception is catched, they must be always combined with TaskGroups.

4.2.1.4 Integration with Numba

PyCOMPSs can also be used with Numba. Numba (http://numba.pydata.org/) is an Open Source JIT compiler for
Python which provides a set of decorators and functionalities to translate Python functions to optimized machine
code.

Basic usage

PyCOMPSs’ tasks can be decorated with Numba’s @jit/@njit decorator (with the appropiate parameters) just
below the @task decorator in order to apply Numba to the task.

from pycompss.api.task import task # Import @task decorator
from numba import jit

Otask(returns=1)
@jit O
def numba_func(a, b):

The task will be optimized by Numba within the worker node, enabling COMPSs to use the most efficient imple-
mentation of the task (and exploiting the compilation cache — any task that has already been compiled does not
need to be recompiled in subsequent invocations).

Advanced usage

PyCOMPSs can be also used in conjuntion with the Numba’s @vectorize, @guvectorize, @stencil and @cfunc.
But since these decorators do not preserve the original argument specification of the original function, their usage
is done through the numba parameter withih the @task decorator. The numba parameter accepts:

e Boolean: True: Applies jit to the function.
e Dictionary{k, v}: Applies jit with the dictionary parameters to the function (allows to specify specific jit
parameters (e.g. nopython=True)).
e String:
— "jit": Applies jit to the function.
— "njit": Applies jit with nopython=True to the function.
— "generated_jit": Applies generated jit to the function.
— "vectorize": Applies vectorize to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the vectorize signature.
— "guvectorize": Applies guvectorize to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the guvectorize signature.
x numba_ declaration: String with the guvectorize declaration.
— "stencil": Applies stencil to the function.
— "cfunc": Applies cfunc to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the cfunc signature.

Moreover, the @task decorator also allows to define specific flags for the jit, njit, generated _jit, vectorize, guvectorize
and cfunc functionalities with the numba_ flags hint. This hint is used to declare a dictionary with the flags expected
to use with these numba functionalities. The default flag included by PyCOMPSs is the cache=True in order to
exploit the function caching of Numba across tasks.

4.2. Python Binding 123

http://numba.pydata.org/

COMPSs Documentation, 3.1

For example, to apply Numba jit to a task:

from pycompss.api.task import task

Otask(numba='jit') # Aternatively: @task(numba=True)
def jit_func(a, b):

And if the developer wants to use specific flags with jit (e.g. parallel=True), the numba_ flags must be defined
with a dictionary where the key is the numba flag name, and the value, the numba flag value to use):

from pycompss.api.task import task

Otask(numba='jit', numba_flags={'parallel':True})
def jit_func(a, b):

Other Numba’s functionalities require the specification of the function signature and declaration. In the next
example a task that will use the vectorize with three parameters and a specific flag to target the CPU is shown:

from pycompss.api.task import task

Otask(returns=1,
numba='vectorize',
numba_signature=['float32(float32, float32, float32)'],
numba_flags={"'target':'cpu'l})
def vectorize_task(a, b, c):
return a * b * ¢

Using Numba with GPUs

In addition, Numba is also able to optimize python code for GPUs that can be used within PyCOMPSs’ tasks.
Task using Numba and a GPU shows an example of a task that performsa matrix multiplication in GPU (code
from Numba documentation).

The main function creates the input and output matrices, and invokes the do_matmul task which has a constraint
of one CPU and one GPU. This task first transfers the necessary data to the GPU using Numba’s cuda module,
then invokes the matmul function (that is decorated with the Numba’s @cuda.jit). When the execution in
the GPU of the ~“matmul finishes, the result is transfered to the cpu with the copy_to_host function and the
task result is returned.

Code 130: Task using Numba and a GPU

import math

from numba import cuda, float64

import numpy as np

from pycompss.api.task import task

from pycompss.api.api import compss_wait_on
from pycompss.api.constraint import constraint

TPB = 16

Ocuda.jit
def matmul(A, B, C):

"""Perform square matriz multiplication of C = A * B

i, j = cuda.grid(2)

(continues on next page)

124 Chapter 4. Application development

https://numba.pydata.org/numba-doc/dev/cuda/examples.html

COMPSs Documentation, 3.1

(continued from previous page)

if i < C.shape[0] and j < C.shapel[1]:
tmp = O.
for k in range(A.shape[1]):
tmp += A[i, k] * B[k, j]
Cli, j]l = tmp

Qconstraint (processors=[{'ProcessorType':'CPU', 'ComputingUnits':'1'},
{'ProcessorType':'GPU', 'ComputingUnits':'1'}])
Otask(returns=1)
def do_matmul(a, b, c):
gpu_a = cuda.to_device(a)
gpu_b = cuda.to_device(b)
gpu_c = cuda.to_device(c)

threadsperblock = (TPB, TPB)

blockspergrid_x = math.ceil(gpu_c.shape[0] / threadsperblock[0])
blockspergrid_y = math.ceil(gpu_c.shape[1] / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)

matmul [blockspergrid, threadsperblock] (gpu_a, gpu_b, gpu_c)
¢ = gpu_c.copy_to_host()
return c

def main():
a = np.random.uniform(l, 2, (4, 4))
b = np.random.uniform(1l, 2, (4, 4))
¢ = np.zeros((4, 4))

result = do_matmul(a, b, c)
result = compss_wait_on(result)

print("a: \n %s" % str(a))
print("b: \n %s" % str(b))
print ("Result: \n %s" % str(result))

print("Verification result: ")
print(a @ b)

if __name__=="__main__":

main()

Caution: The function compiled with Numba for GPU can not be a task since the step to transfer the data
to the GPU and backwards needs to be explicitly performed by the user.

For this reason, the appropiate structure is composed by a task that has the necessary constraints, deals with
the data movements and invokes the function compiled with Numba for GPU.

The main application can then invoke the task.

Important: In order to run with GPUs in local machine, you need to define the available GPUs in the project.
xml file.

As example, the following project.xml and resources.xml shall be used with the --project and --resources
correspondingly:

4.2. Python Binding 125

COMPSs Documentation, 3.1

e project.xml
® resources.xml

More details about Numba and the specification of the signature, declaration and flags can be found in the Numba’s
webpage (http://numba.pydata.org/).

4.2.2 Application Execution

The next subsections describe how to execute applications with the COMPSs Python binding.

4.2.2.1 Environment

The following environment variables must be defined before executing a COMPSs Python application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

4.2.2.2 Command

In order to run a Python application with COMPSs, the runcompss script can be used, like for Java and C/C+-+
applications. An example of an invocation of the script is:

compss@bsc:~$ runcompss \
--lang=python \
--pythonpath=$TEST_DIR \
$TEST_DIR/application.py argl arg2

Or alternatively, use the pycompss module:

compss@bsc:~$ python -m pycompss \
--pythonpath=$TEST_DIR \
$TEST_DIR/application.py argl arg2

Tip: The runcompss command is able to detect the application language. Consequently, the --lang=python is
not mandatory.

Tip: The --pythonpath flag enables the user to add directories to the PYTHONPATH environment variable and
export them into the workers, so that the tasks can resolve successfully its imports.

Tip: PyCOMPSs applications can also be launched without parallelization (as a common python script) by
avoiding the -m pycompss and its flags when using python:

compss@bsc:~$ python $TEST_DIR/application.py argl arg?2

The main limitation is that the application must only contain @task, @binary and/or @mpi decorators and Py-
COMPSs needs to be installed.

For full description about the options available for the runcompss command please check the Ezecuting COMPSs
applications Section.

126 Chapter 4. Application development

http://numba.pydata.org/

COMPSs Documentation, 3.1

4.2.3 Integration with Jupyter notebook

PyCOMPSs can also be used within Jupyter notebooks. This feature allows users to develop and run their
PyCOMPSs applications in a Jupyter notebook, where it is possible to modify the code during the execution and
experience an interactive behaviour.

4.2.3.1 Environment Variables

The following libraries must be present in the appropiate environment variables in order to enable PyCOMPSs
within Jupyter notebook:

PYTHONPATH The path where PyCOMPSs is installed (e.g. /opt/COMPSs/Bindings/python/). Please, note
that the path contains the folder 2 and/or 3. This is due to the fact that PyCOMPSs is able to choose the
appropiate one depending on the kernel used with jupyter.

LD LIBRARY PATH The path where the 1ibbindings-commons.so library is located (e.g. <COMPSS_-
INSTALLATION_PATH>/Bindings/bindings-common/1ib/) and the path where the 1ibjvm.so library is lo-
cated (e.g. /usr/lib/jv